

Permission is granted to copy, distribute and/or modify this document under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
at http://creativecommons.org/licenses/by-nc-sa/4.0.

1

http://creativecommons.org/licenses/by-nc-sa/4.0

Contents

1 On Concurrent Programming 9

2 Hello World! 13

3 The Problem of Concurrent Programming 19

4 The Harmony Virtual Machine 27

5 Critical Sections 34

6 Peterson’s Algorithm 41

7 Harmony Methods and Pointers 48

8 Specification 53

9 Spinlock 56

10 Lock Implementations 60

11 Concurrent Data Structures 68

12 Fine-Grained Locking 73

13 Testing: Checking Behaviors 77

14 Debugging 83

15 Conditional Waiting 89
15.1 Reader/Writer Locks . 89
15.2 Bounded Buffer . 92

16 Split Binary Semaphores 96

17 Starvation 101

18 Monitors 104

2

19 Deadlock 113

20 Actors and Message Passing 120

21 Barrier Synchronization 123

22 Example: A Concurrent File Service 128

23 Interrupts 140

24 Non-Blocking Synchronization 147

25 Alternating Bit Protocol 150

26 Leader Election 154

27 Transactions and Two Phase Commit 157

28 Chain Replication 162

29 Working with Actions 168

30 Replicated Atomic Read/Write Register 172

31 Distributed Consensus 177

32 Paxos 184

33 Needham-Schroeder Authentication Protocol 188

Bibliography 191

A Harmony Language Details 194
A.1 Value Types and Operators . 194
A.2 Statements . 201
A.3 Harmony is not object-oriented . 208
A.4 Constants, Global and Local Variables . 209
A.5 Operator Precedence . 209
A.6 Tuples, Lists, and Pattern Matching . 210
A.7 Dynamic Allocation . 211
A.8 Comments . 213
A.9 Type Checking . 213

B Modules 215
B.1 The action module . 215
B.2 The alloc module . 216
B.3 The bag module . 216
B.4 The fork module . 216
B.5 The hoare module . 217

3

B.6 The list module . 217
B.7 The set module . 218
B.8 The synch module . 219

C The Harmony Virtual Machine 220
C.1 Machine Instructions . 221
C.2 Addresses and Method Calls . 223
C.3 Contexts and Threads . 223
C.4 Formal Specification . 224

D How Harmony Works 225
D.1 Compiler . 225
D.2 Model Checker . 226
D.3 Model Checker Output Analysis . 227

E Simplified Grammar 229

F Directly checking linearizability 232

G Manual Pages 236

Acknowledgments 239

Index 240

Glossary 242

4

List of Figures

2.1 [code/hello1.hny] Hello World! . 13
2.2 [code/hello3.hny] Harmony program with two possible outputs 14
2.3 [code/hello4.hny] Harmony program with an infinite number of possible outputs . . 14
2.4 Demonstrating Harmony methods and threads . 15
2.5 [code/hello7.hny] Various interleavings of threads . 15
2.6 [code/hello8.hny] Making groups of operations atomic reduces interleaving 16
2.7 [code/triangle.hny] Computing triangle numbers . 17
2.8 Running the code in Figure 2.7 . 17
2.9 Running the code in Figure 2.7 for N = 100 . 18

3.1 A sequential and a concurrent program . 19
3.2 The output of running the code in Figure 3.1(b) . 20
3.3 [code/Up.hny] Incrementing the same variable twice in parallel 21
3.4 [code/Upr.hny] What actually happens in Figure 3.3 22
3.5 The output of running the code in Figure 3.3 . 23
3.6 [code/Upf.hny] Demonstrating the finally clause. 24
3.7 [python/Up.py] Python implementation of Figure 3.3 25
3.8 [python/UpMany.py] Using Python to increment N times 26

4.1 The first part of the HVM bytecode corresponding to Figure 3.3 29
4.2 The HTML output of running Harmony on Figure 3.3 31
4.3 [code/UpEnter.hny] Incorrect attempt at fixing the code of Figure 3.3 33

5.1 [code/csbarebones.hny] Modeling a critical section 34
5.2 [code/cs.hny] Harmony model of a critical section . 35
5.3 [code/naiveLock.hny] Näıve implementation of a shared lock and the markdown out-

put of running Harmony . 37
5.4 [code/naiveFlags.hny] Näıve use of flags to solve mutual exclusion 38
5.5 [code/naiveTurn.hny] Näıve use of turn variable to solve mutual exclusion 39

6.1 [code/Peterson.hny] Peterson’s Algorithm . 42
6.2 Venn diagram classifying all states and a trace . 42
6.3 [code/csonebit.hny] Mutual exclusion using a flag per thread 47

7.1 [code/PetersonMethod.hny] Peterson’s Algorithm accessed through methods 49
7.2 [code/hanoi.hny] Towers of Hanoi . 50

5

https://harmony.cs.cornell.edu/code/hello1.hny
https://harmony.cs.cornell.edu/code/hello3.hny
https://harmony.cs.cornell.edu/code/hello4.hny
https://harmony.cs.cornell.edu/code/hello7.hny
https://harmony.cs.cornell.edu/code/hello8.hny
https://harmony.cs.cornell.edu/code/triangle.hny
https://harmony.cs.cornell.edu/code/Up.hny
https://harmony.cs.cornell.edu/code/Upr.hny
https://harmony.cs.cornell.edu/code/Upf.hny
https://harmony.cs.cornell.edu/python/Up.py
https://harmony.cs.cornell.edu/python/UpMany.py
https://harmony.cs.cornell.edu/output/Up.html
https://harmony.cs.cornell.edu/code/UpEnter.hny
https://harmony.cs.cornell.edu/code/csbarebones.hny
https://harmony.cs.cornell.edu/code/cs.hny
https://harmony.cs.cornell.edu/code/naiveLock.hny
https://harmony.cs.cornell.edu/code/naiveFlags.hny
https://harmony.cs.cornell.edu/code/naiveTurn.hny
https://harmony.cs.cornell.edu/code/Peterson.hny
https://harmony.cs.cornell.edu/code/csonebit.hny
https://harmony.cs.cornell.edu/code/PetersonMethod.hny
https://harmony.cs.cornell.edu/code/hanoi.hny

7.3 [code/clock.hny] Harmony program that finds page replacement anomalies 51

8.1 [code/lock.hny] Specification of a lock . 54
8.2 [code/lock demo.hny] Using a lock to implement a critical section 54
8.3 [code/UpLock.hny] Figure 3.3 fixed with a lock . 55

9.1 [code/spinlock.hny] Mutual Exclusion using a “spinlock” based on test-and-set . . . 57

10.1 [code/lock tas.hny] Implementation of the lock specification in Figure 8.1 using a
spinlock based on test-and-set . 61

10.2 [code/lock ticket.hny] Implementation of the lock specification in Figure 8.1 using a
ticket lock . 62

10.3 [code/lock test1.hny] A test program for locks (based on Figure 5.2) 63
10.4 [modules/lock susp.hny] Lock implementation using suspension 64
10.5 [code/xy.hny] Incomplete code for Exercise 10.2 with desired invariant x+ y = 100 . 66
10.6 [code/atm.hny] Withdrawing money from an ATM 67

11.1 A sequential and a concurrent specification of a queue 69
11.2 [code/queue test1.hny] Using a concurrent queue . 69
11.3 [code/queue lock.hny] An implementation of a concurrent queue data structure and

a depiction of a queue with three elements . 71
11.4 [code/queue MS.hny] A queue with separate locks for enqueuing and dequeuing items

and a depiction of a queue with two elements . 72

12.1 [code/setobj.hny] Specification of a concurrent set object 74
12.2 [code/setobj test1.hny] Test code for set objects . 74
12.3 [code/setobj linkedlist.hny] Implementation of a set of values using a linked list with

fine-grained locking . 75

13.1 [code/queue test seq.hny] Sequential queue test . 78
13.2 [code/queue btest1.hny] Concurrent queue test. The behavior DFA is for NOPS = 2. . 79
13.3 [python/queue btest1.py] Python implementation of Figure 13.2 80
13.4 [code/queue nonatom seq.hny] Sequential but not a concurrent queue implementation 81

14.1 [code/queue broken.hny] Another buggy queue implementation 84
14.2 Running Figure 13.2 against Figure 14.1 . 85
14.3 HTML output of Figure 14.2 but for NOPS=3 . 86
14.4 [code/queue fix.hny] Queue implementation with hand-over-hand locking 88

15.1 [code/rwlock.hny] Specification of reader/writer locks 90
15.2 [code/rwlock test1.hny] Test code for reader/writer locks 91
15.3 [code/rwlock cheat.hny] ”Cheating” reader/writer lock 92
15.4 [code/rwlock btest.hny] A behavioral test of reader/writer locks 93
15.5 [code/rwlock busy.hny] Busy waiting reader/writer lock 94
15.6 [code/boundedbuffer.hny] Bounded buffer specification 95

16.1 [code/rwlock sbs.hny] Reader/Writer Lock using Split Binary Semaphores 97
16.2 [code/gpu.hny] A thread-unsafe GPU allocator . 100

6

https://harmony.cs.cornell.edu/code/clock.hny
https://harmony.cs.cornell.edu/code/lock.hny
https://harmony.cs.cornell.edu/code/lock_demo.hny
https://harmony.cs.cornell.edu/code/UpLock.hny
https://harmony.cs.cornell.edu/code/spinlock.hny
https://harmony.cs.cornell.edu/code/lock_tas.hny
https://harmony.cs.cornell.edu/code/lock_ticket.hny
https://harmony.cs.cornell.edu/code/lock_test1.hny
https://harmony.cs.cornell.edu/modules/lock_susp.hny
https://harmony.cs.cornell.edu/code/xy.hny
https://harmony.cs.cornell.edu/code/atm.hny
https://harmony.cs.cornell.edu/code/queue_test1.hny
https://harmony.cs.cornell.edu/code/queue_lock.hny
https://harmony.cs.cornell.edu/code/queue_MS.hny
https://harmony.cs.cornell.edu/code/setobj.hny
https://harmony.cs.cornell.edu/code/setobj_test1.hny
https://harmony.cs.cornell.edu/code/setobj_linkedlist.hny
https://harmony.cs.cornell.edu/code/queue_test_seq.hny
https://harmony.cs.cornell.edu/code/queue_btest1.hny
https://harmony.cs.cornell.edu/python/queue_btest1.py
https://harmony.cs.cornell.edu/code/queue_nonatom_seq.hny
https://harmony.cs.cornell.edu/code/queue_broken.hny
https://harmony.cs.cornell.edu/output/queuebug.html
https://harmony.cs.cornell.edu/code/queue_fix.hny
https://harmony.cs.cornell.edu/code/rwlock.hny
https://harmony.cs.cornell.edu/code/rwlock_test1.hny
https://harmony.cs.cornell.edu/code/rwlock_cheat.hny
https://harmony.cs.cornell.edu/code/rwlock_btest.hny
https://harmony.cs.cornell.edu/code/rwlock_busy.hny
https://harmony.cs.cornell.edu/code/boundedbuffer.hny
https://harmony.cs.cornell.edu/code/rwlock_sbs.hny
https://harmony.cs.cornell.edu/code/gpu.hny

17.1 [code/rwlock fair.hny] Reader/Writer Lock SBS implementation addressing fairness . 102

18.1 [modules/hoare.hny] Implementation of Hoare monitors 105
18.2 [code/boundedbuffer hoare.hny] Bounded Buffer implemented using a Hoare monitor 106
18.3 [modules/synch.hny] Implementation of condition variables in the synch module . . 108
18.4 [code/rwlock cv.hny] Reader/Writer Lock using Mesa-style condition variables . . . 109
18.5 [code/qsort.hny] Iterative qsort() implementation . 112
18.6 [code/qsorttest.hny] Test program for Figure 18.5 . 112

19.1 [code/Diners.hny] Dining Philosophers . 114
19.2 [code/DinersCV.hny] Dining Philosophers that grab both forks at the same time . . 115
19.3 [code/DinersAvoid.hny] Dining Philosophers that carefully avoid getting into a dead-

lock scenario . 117
19.4 [code/bank.hny] Bank accounts . 119

20.1 Depiction of three actors. The producer does not receive messages. 120
20.2 [code/counter.hny] An illustration of the actor approach 121

21.1 [code/barrier test1.hny] Test program for Figure 21.2 124
21.2 [code/barrier.hny] Barrier implementation . 124
21.3 [code/barrier test2.hny] Demonstrating the double-barrier pattern 125
21.4 [code/bsort.hny] Parallel bubble sort . 126

22.1 [code/file.hny] Specification of the file system . 129
22.2 [code/file btest.hny] Test program for a concurrent file system 130
22.3 [code/disk.hny] Specification of a disk . 131
22.4 The file system data structure: (a) disk layout (1 superblock, n blocks, b bitmap

blocks, m inode blocks, 4 inodes per block); (b) inode for a file with 3 data blocks . 131
22.5 [code/file inode.hny] File system implementation preamble 132
22.6 [code/file inode.hny] File system interface implementation 133
22.7 [code/file inode.hny] File server and worker threads 134
22.8 [code/file inode.hny] File system initialization . 135
22.9 [code/file inode.hny] File system bitmap maintenance 136
22.10[code/file inode.hny] Handling of read-only file requests 137
22.11[code/file inode.hny] Handling of write requests . 138
22.12[code/wal.hny] Specification of a Write Ahead Log 139

23.1 [code/trap.hny] How to use trap . 141
23.2 [code/trap2.hny] A race condition with interrupts . 141
23.3 [code/trap3.hny] Locks do not work with interrupts 142
23.4 [code/trap4.hny] Disabling and enabling interrupts 143
23.5 [code/trap5.hny] Example of an interrupt-safe method 144
23.6 [code/trap6.hny] Code that is both interrupt-safe and thread-safe 145

24.1 [code/hw.hny] Non-blocking queue . 148

25.1 [code/abp.hny] Alternating Bit Protocol . 151

7

https://harmony.cs.cornell.edu/code/rwlock_fair.hny
https://harmony.cs.cornell.edu/modules/hoare.hny
https://harmony.cs.cornell.edu/code/boundedbuffer_hoare.hny
https://harmony.cs.cornell.edu/modules/synch.hny
https://harmony.cs.cornell.edu/code/rwlock_cv.hny
https://harmony.cs.cornell.edu/code/qsort.hny
https://harmony.cs.cornell.edu/code/qsorttest.hny
https://harmony.cs.cornell.edu/code/Diners.hny
https://harmony.cs.cornell.edu/code/DinersCV.hny
https://harmony.cs.cornell.edu/code/DinersAvoid.hny
https://harmony.cs.cornell.edu/code/bank.hny
https://harmony.cs.cornell.edu/code/counter.hny
https://harmony.cs.cornell.edu/code/barrier_test1.hny
https://harmony.cs.cornell.edu/code/barrier.hny
https://harmony.cs.cornell.edu/code/barrier_test2.hny
https://harmony.cs.cornell.edu/code/bsort.hny
https://harmony.cs.cornell.edu/code/file.hny
https://harmony.cs.cornell.edu/code/file_btest.hny
https://harmony.cs.cornell.edu/code/disk.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/wal.hny
https://harmony.cs.cornell.edu/code/trap.hny
https://harmony.cs.cornell.edu/code/trap2.hny
https://harmony.cs.cornell.edu/code/trap3.hny
https://harmony.cs.cornell.edu/code/trap4.hny
https://harmony.cs.cornell.edu/code/trap5.hny
https://harmony.cs.cornell.edu/code/trap6.hny
https://harmony.cs.cornell.edu/code/hw.hny
https://harmony.cs.cornell.edu/code/abp.hny

25.2 [code/abptest.hny] Test code for alternating bit protocol 152

26.1 [code/leader.hny] A leader election protocol on a ring 155

27.1 [code/2pc.hny] Two Phase Commit protocol: code for banks 158
27.2 [code/2pc.hny] Two Phase Commit protocol: code for transaction coordinators . . . 159

28.1 [code/rsm.hny] Replicated State Machine . 163
28.2 The DFA generated by Figure 28.1 when NOPS=2 and NREPLICAS=2 164
28.3 [code/chain.hny] Chain Replication (part 1) . 165
28.4 [code/chain.hny] Chain Replication (part 2) . 166

29.1 [code/chainaction.hny] Chain Replication specification using actions (part 1) 169
29.2 [code/chainaction.hny] Chain Replication specification using actions (part 2) 170

30.1 [code/register.hny] An atomic read/write register . 173
30.2 [code/abdtest.hny] Behavioral test for atomic read/write registers and the output for

the case that NREADERS = NWRITERS = 1 . 174
30.3 [code/abd.hny] An implementation of a replicated atomic read/write register 175

31.1 [code/consensus.hny] Distributed consensus code and behavior DFA 178
31.2 [code/bosco.hny] A crash-tolerant consensus protocol 180
31.3 The behavior DFA for Figure 31.2 . 181
31.4 [code/bosco2.hny] Reducing the state space . 183

32.1 [code/paxos.hny] A version of the Paxos protocol, Part 1 185
32.2 [code/paxos.hny] A version of the Paxos protocol, Part 2 186

33.1 [code/needhamschroeder.hny] Needham-Schroeder protocol and an attack 189

A.1 Using save and go to implement fork() . 205
A.2 [code/stacktest.hny] Testing a stack implementation. 211
A.3 [code/stack1.hny] Stack implemented using a dynamically updated list. 211
A.4 [code/stack2.hny] Stack implemented using static lists. 212
A.5 [code/stack3.hny] Stack implemented using a recursive tuple data structure. 212
A.6 [code/stack4.hny] Stack implemented using a linked list. 213

F.1 [code/queuelin.hny] Queue implementation with linearization points 233
F.2 [code/qtestconc.hny] Concurrent queue test . 234

8

https://harmony.cs.cornell.edu/code/abptest.hny
https://harmony.cs.cornell.edu/code/leader.hny
https://harmony.cs.cornell.edu/code/2pc.hny
https://harmony.cs.cornell.edu/code/2pc.hny
https://harmony.cs.cornell.edu/code/rsm.hny
https://harmony.cs.cornell.edu/code/chain.hny
https://harmony.cs.cornell.edu/code/chain.hny
https://harmony.cs.cornell.edu/code/chainaction.hny
https://harmony.cs.cornell.edu/code/chainaction.hny
https://harmony.cs.cornell.edu/code/register.hny
https://harmony.cs.cornell.edu/code/abdtest.hny
https://harmony.cs.cornell.edu/code/abd.hny
https://harmony.cs.cornell.edu/code/consensus.hny
https://harmony.cs.cornell.edu/code/bosco.hny
https://harmony.cs.cornell.edu/code/bosco2.hny
https://harmony.cs.cornell.edu/code/paxos.hny
https://harmony.cs.cornell.edu/code/paxos.hny
https://harmony.cs.cornell.edu/code/needhamschroeder.hny
https://harmony.cs.cornell.edu/code/stacktest.hny
https://harmony.cs.cornell.edu/code/stack1.hny
https://harmony.cs.cornell.edu/code/stack2.hny
https://harmony.cs.cornell.edu/code/stack3.hny
https://harmony.cs.cornell.edu/code/stack4.hny
https://harmony.cs.cornell.edu/code/queuelin.hny
https://harmony.cs.cornell.edu/code/qtestconc.hny

Chapter 1

On Concurrent Programming

Programming with concurrency is hard. On the one hand concurrency can make programs faster
than sequential ones, but having multiple threads read and update shared variables concurrently
and synchronize with one another makes programs more complicated than programs where only
one thing happens at a time. Why are concurrent programs more complicated than sequential
ones? There are, at least, two reasons:

� The execution of a sequential program is mostly deterministic. If you run it twice with the
same input, the same output will be produced. Bugs are typically easily reproducible and easy
to track down, for example by instrumenting the program. On the other hand, the output
of running concurrent programs depends on how the execution of the various threads are
interleaved. Some bugs may occur only occasionally and may never occur when the program
is instrumented to find them (so-called Heisenbugs—overhead caused by instrumentation leads
to timing changes that makes such bugs less likely to occur).

� In a sequential program, each statement and each function can be thought of as happening
atomically (indivisibly) because there is no other activity interfering with their execution.
Even though a statement or function may be compiled into multiple machine instructions,
they are executed back-to-back until completion. Not so with a concurrent program, where
other threads may update memory locations while a statement or function is being executed.

The lack of determinism and atomicity in concurrent programs make them not only hard to reason
about, but also hard to test. Running the same test of concurrent code twice is likely to produce
two different results. More problematically, a test may trigger a bug only for certain “lucky”
executions. Due to the probabilistic nature of concurrent code, some bugs may be highly unlikely
to get triggered even when running a test millions of times. And even if a bug does get triggered,
the source of the bug may be hard to find because it is hard to reproduce.

This book is intended to help people with understanding and developing concurrent code, which
includes programs for distributed systems. In particular, it uses a tool called Harmony that helps
with testing concurrent code. The approach is based on model checking [CES86]: instead of relying
on luck, Harmony will run all possible executions of a particular test program. So, even if a bug is
unlikely to occur, if the test can expose the bug it will. Moreover, if the bug is found, the model
checker precisely shows how to trigger the bug in the smallest number of steps.

9

Model checking is not a replacement for formal verification. Formal verification proves that a
program is correct. Model checking only verifies that a program is correct for some model. Think of
a model as a test program. Because model checking tries every possible execution, the test program
needs to be simple—otherwise it may take longer than we care to wait for or run out of memory.
In particular, the model needs to have a relatively small number of reachable states.

If model checking does not prove a program correct, why is it useful? To answer that question,
consider a sorting algorithm. Suppose we create a test program, a model, that tries sorting all lists
of up to five numbers chosen from the set {1, 2, 3, 4, 5 }. Model checking proves that for those
particular scenarios the sorting algorithm works: the output is a sorted permutation of the input.
In some sense it is an excellent test: it will have considered all corner cases, including lists where
all numbers are the same, lists that are already sorted or reversely sorted, etc. If there is a bug
in the sorting algorithm, most likely it would be triggered and the model checker would produce a
scenario that would make it easy to find the source of the bug.

However, if the model checker does not find any bugs, we do not know for sure that the algorithm
works for lists of more than five numbers or for lists that have values other than the numbers 1
through 5. Still, we would expect that the likelihood that there are bugs remaining in the sorting
algorithm is small. That said, it would be easy to write a program that sorts all lists of up to five
numbers correctly but fails to do so for a list of 6 numbers. (Hint: simply use an if statement.)

While model checking does not in general prove an algorithm correct, it can help with proving an
algorithm correct. The reason is that many correctness properties can be proved using invariants:
predicates that must hold for every state in the execution of a program. A model checker can find
violations of proposed invariants when evaluating a model and provide valuable early feedback to
somebody who is trying to construct a proof, even an informal one. We will include examples of
such invariants as they often provide excellent insight into why a particular algorithm works.

So, what is Harmony? Harmony is a concurrent programming language. It was designed to teach
the basics of concurrent and distributed programming, but it is also useful for testing new concurrent
algorithms or even sequential and distributed algorithms. Harmony programs are not intended to
be “run” like programs in most other programming languages—instead Harmony programs are
model checked to test that the program has certain desirable properties and does not suffer from
bugs.

The syntax and semantics of Harmony is similar to that of Python. Python is familiar to many
programmers and is easy to learn and use. We will assume that the reader is familiar with the
basics of Python programming. We also will assume that the reader understands some basics of
machine architecture and how programs are executed. For example, we assume that the reader is
familiar with the concepts of CPU, memory, register, stack, and machine instructions.

Harmony is heavily influenced by Leslie Lamport’s work on TLA+, TLC, and PlusCal [Lam02,
Lam09], Gerard Holzmann’s work on Promela and SPIN [Hol11], and University of Washington’s
DSLabs system [MWA+19]. Some of the examples in this book are derived from those sources.
Harmony is designed to have a lower learning curve than those systems, but is not as powerful.
When you finish this book and want to learn more, we strongly encourage checking those out.
Another excellent resource is Fred Schneider’s book “On Concurrent Programming” [Sch97]. (This
chapter is named after that book.)

The book proceeds as follows:

� Chapter 2 introduces the Harmony programming language, as it provides the language for
presenting synchronization problems and solutions.

10

� Chapter 3 illustrates the problem of concurrent programming through a simple example in
which two threads are concurrently incrementing a counter.

� Chapter 4 presents the Harmony virtual machine to understand the problem underlying con-
currency better.

� Chapter 5 introduces the concept of a critical section and presents various flawed implemen-
tations of critical sections to demonstrate that implementing a critical section is not trivial.

� Chapter 6 introduces Peterson’s Algorithm, an elegant (although not very efficient or practical)
solution to implementating a critical section.

� Chapter 7 gives some more details on the Harmony language needed for the rest of the book.

� Chapter 8 talks about how Harmony can be used as a specification language. It introduces
how to specify atomic constructs.

� Chapter 9 introduces atomic locks for implemented critical sections.

� Chapter 10 looks at various ways in which the lock specification in Chapter 8 can be imple-
mented.

� Chapter 11 gives an introduction to building concurrent data structures.

� Chapter 12 gives an example of fine-grained locking methods that allow more concurrency
than coarse-grained approaches..

� Chapter 13 discusses approaches to testing concurrent code in Harmony.

� Chapter 14 instead goes into how to find a bug in concurrent code using the Harmony output.

� Chapter 15 talks about threads having to wait for certain conditions. As examples, it presents
the reader/writer lock problem and the bounded buffer problem.

� Chapter 16 presents Split Binary Semaphores, a general technique for solving synchronization
problems.

� Chapter 17 talks about starvation: the problem that in some synchronization approaches
threads may not be able to get access to a resource they need.

� Chapter 18 presents monitors and condition variables, another approach to thread synchron-
ication.

� Chapter 19 describes deadlock where a set of threads are indefinitely waiting for one another
to release a resource.

� Chapter 20 presents the actor model and message passing as an approach to synchronization.

� Chapter 21 describes barrier synchronization, useful in high-performance computing applica-
tions such as parallel simulations.

� Chapter 22 presents a concurrent file system as as larger example of a concurrent program.

11

� Chapter 23 discusses how to handle interrupts, a problem closely related to—but not the same
as—synchronizing threads.

� Chapter 24 introduces non-blocking or wait-free synchronization algorithms, which prevent
threads waiting for one another more than a bounded number of steps.

� Chapter 25 presents a problem and a solution to the distributed systems problem of having
two threads communicate reliably over an unreliable network.

� Chapter 26 presents a protocol for electing a leader on a ring of processors, where each
processor is uniquely identified and only knows its successor on the ring.

� Chapter 27 describes atomic database transactions and the two-phase commit protocol used
to implement them.

� Chapter 28 describes state machine replication and the chain replication protocol to support
replication.

� Chapter 29 describes an alternative way to write concurrent and distributed specifications in
Harmony, using chain replication as an example.

� Chapter 30 presents a protocol for a fault-tolerant replicated object that supports only read
and write operations.

� Chapter 31 demonstrates a fault-tolerant distributed consensus algorithm (aka protocol) ex-
pressed in Harmony.

� Chapter 32 shows how one can specify and check the well-known Paxos consensus protocol.

� Chapter 33 demonstrates using Harmony to find a (known) bug in the original Needham-
Schroeder authentication protocol.

If you already know about concurrent and distributed programming and are just interested
in a “speed course” on Harmony, I would recommend reading Chapter 2, Chapter 4, Chapter 7,
Chapter 8, and Chapter 11. The appendices contain various details about Harmony itself, including
an appendix on convenient Harmony modules (Appendix B), and an appendix that explains how
Harmony works (Appendix D).

12

Chapter 2

Hello World!

The first programming book that I read cover to cover was The C Programming Language (first
edition) by Brian W. Kernighan and Dennis M. Ritchie, which was around 1980. I did not know
at the time that 10 years later Dennis, the designer of the C programming language, would be my
boss at AT&T Bell Labs in Murray Hill, NJ, while Brian would be my colleague in the same lab.
The first C program in the book printed the string “hello, world”. Since then, most programming
tutorials for pretty much any programming language start with that example.

Harmony, too, has a Hello World program. Figure 2.1 shows the program and the corresponding
output. After installation (see https://harmony.cs.cornell.edu), you can run it as follows from the
command line:

$ harmony code/hello1.hny

Try it out (here $ represents a shell prompt). For this to work, make sure harmony is in your
command shell’s search path. The code for examples in this book can be found in the code folder
under the name listed in the caption of the example. If you need to, you can download the sources
separately from https://harmony.cs.cornell.edu/sources.zip. In this case, the file code/hello1.hny
contains the code in Figure 2.1. The output is a Deterministic State Machine (DFA). The green
circle represents the initial state and the double circle represents the final state. There is one
transition, labeled with the string “hello world”. The DFA describes (or recognizes) all possible
outputs that the program can generate. In this case, there is only one.

1 print "hello world"

Figure 2.1: [code/hello1.hny] Hello World!

13

https://harmony.cs.cornell.edu
https://harmony.cs.cornell.edu/sources.zip
https://harmony.cs.cornell.edu/code/hello1.hny

1 print choose { "hello", "world" }

Figure 2.2: [code/hello3.hny] Harmony program with two possible outputs

1 while choose { False, True }:
2 print "hello world"

Figure 2.3: [code/hello4.hny] Harmony program with an infinite number of possible outputs

But programs can usually have more than one execution and produce multiple different outputs
as a result. This is usually as a result of different inputs, but Harmony programs do not have
inputs. Instead, Figure 2.2 demonstrates nondetermistic choice in Harmony programs. In this
case, the program chooses to print either “hello” or “world”. The corresponding DFA captures
both possibilities. You can think of the choose operator as enumerating all possible inputs to the
program.

Figure 2.3 shows a program that has an infinite number of possible outputs by using a loop with
a non-deterministic stopping condition. Harmony usually requires that any program must be able
to terminate, so the loop is conditioned on a nondeterministic choice between False and True. The
possible outputs consist of zero or more copies of the string “hello world”. Note that this single
state DFA (where the initial state and the final state happen to be the same) captures an infinite
number of possible executions of the program.

Figure 2.4 demonstrates methods and threads in Harmony. In Figure 2.4(a), the code simply
prints the strings “hello” and “world”, in that order. Notice that this leads to an intermediate state
after “hello” is printed but before “world” is. However, there is still only one execution possible.
Figure 2.4(b) shows two threads, one printing “hello” and one printing “world”. Because the
threads run concurrently, the program can either output “hello world” or “world hello”. Printing
in Harmony is atomic, so “hweolrllod” is not a possible output.

Figure 2.5 shows two threads, one printing the strings “hello” and “Robbert”, while the other
prints “hello” and “Lesley”. Now there are four possible outputs depending on how the two threads
are interleaved, including “hello hello Lesley Robbert”. This is probably not what the programmer
wanted. Figure 2.6 shows another important feature of Harmony: atomic blocks. The program
is similar to Figure 2.5, but the programmer specified that the two print statements in a thread
should be executed as an atomic unit. As a result, there are only two interleavings possible.

14

https://harmony.cs.cornell.edu/code/hello3.hny
https://harmony.cs.cornell.edu/code/hello4.hny

1 def p(s):
2 print s
3

4 p("hello")
5 p("world")

1 def p(s):
2 print s
3

4 spawn p("hello")
5 spawn p("world")

(a) [code/hello5.hny] [code/hello6.hny]

Figure 2.4: Demonstrating Harmony methods and threads

1 def hello(name):
2 print "hello"
3 print name
4

5 spawn hello("Lesley")
6 spawn hello("Robbert")

Figure 2.5: [code/hello7.hny] Various interleavings of threads

15

https://harmony.cs.cornell.edu/code/hello5.hny
https://harmony.cs.cornell.edu/code/hello6.hny
https://harmony.cs.cornell.edu/code/hello7.hny

1 def hello(name):
2 atomically:
3 print "hello"
4 print name
5

6 spawn hello("Lesley")
7 spawn hello("Robbert")

Figure 2.6: [code/hello8.hny] Making groups of operations atomic reduces interleaving

Harmony is a programming language that borrows much of Python’s syntax. Like Python, Har-
mony is an imperative, dynamically typed programming language. There are also some important
differences:

� Harmony purposely only supports basic operator precedence or associativity. Use parentheses
liberally to remove ambiguity.

� Harmony does not support floating point;

� Python is object-oriented, supporting classes with methods and inheritance; Harmony has
objects but does not support classes. Harmony supports pointers, allowing construction of
complicated data structures.

� In Python, lists, dictionaries, and sets are objects. In Harmony, they are values.

There are also less important differences that you will discover as you get more familiar with
programming in Harmony.

Figure 2.7 shows another example of a Harmony program. The example is a sequential program
and has a method triangle that takes an integer number as argument. The method declares a
variable called result that eventually contains the result of the method (there is no return statement
in Harmony). The method also has a bound variable called n containing the value of the argument.
The { x..y } notation represents a set containing the numbers from x to y (inclusive). (Harmony
does not have a range operator like Python.) The last two lines in the program are the most
interesting. The first assigns to x some unspecified value in the range 0..N and the second verifies
that triangle(x) equals x(x+ 1)/2.

Running this Harmony program (Figure 2.8) will try all possible executions, which includes all
possible values for x. The --noweb flag tells Harmony not to automatically pop up the web browser
window. The text output from running Harmony is in Markdown format.

16

https://harmony.cs.cornell.edu/code/hello8.hny

1 const N = 10
2

3 def triangle(n) returns result : # computes the n’th triangle number
4 result = 0
5 for i in {1..n}: # for each integer from 1 to n inclusive
6 result += i # add i to result
7

8 x = choose {0..N} # select an x between 0 and N inclusive
9 assert triangle(x) == ((x * (x + 1)) / 2)

Figure 2.7: [code/triangle.hny] Computing triangle numbers

$ harmony --noweb code/triangle.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 8)

– 13 states (time 0.00s, mem=0.000GB)

� Phase 3: analysis

– 13 components (0.00 seconds)
– Check for data races
– No issues found

� Phase 4: write results to code/triangle.hco
� Phase 5: loading code/triangle.hco

open file:///.../code/triangle.htm for detailed information$

Figure 2.8: Running the code in Figure 2.7

17

https://harmony.cs.cornell.edu/code/triangle.hny

$ harmony -c N=100 –noweb code/triangle.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 8)

– 103 states (time 0.00s, mem=0.000GB)

� Phase 3: analysis

– 103 components (0.00 seconds)
– Check for data races
– No issues found

� Phase 4: write results to code/triangle.hco
� Phase 5: loading code/triangle.hco

open file:///.../code/triangle.htm for detailed information$

Figure 2.9: Running the code in Figure 2.7 for N = 100

The assert statement checks that the output is correct. If the program is correct, Harmony
reports the size of the “state graph” (13 states in this case). If not, Harmony also reports what
went wrong, typically by displaying a summary of an execution in which something went wrong.

In Harmony, constants have a default specified value, but those can be overridden on the com-
mand line using the -c option. Figure 2.9 shows how to test the code for N = 100.

Exercises

2.1 Write a Harmony program that uses choose instead of spawn to create the same output DFA
as Figure 2.4(b).

2.2 Add the line print(x, triangle(x)) to the end of the program and create an output png file.
Before you look at it, what do you think it should look like?

2.3 See what happens if, instead of initializing result to 0, you initialize it to 1. (You do not need
to understand the error report at this time. They will be explained in more detail in Chapter 4.)

2.4 Write a Harmony program that computes squares by repeated adding. So, the program should
compute the square of x by adding x to an initial value of 0 x times.

18

Chapter 3

The Problem of Concurrent
Programming

Concurrent programming, aka multithreaded programming, involves multiple threads running in
parallel while sharing variables. Figure 3.1 shows two programs. Program (a) is sequential. It sets
shared to True, asserts that shared = True and finally sets shared to False. If you run the program
through Harmony, it will not find any problems because there is only one execution possible and
1) in that execution the assertion does not fail and 2) the execution terminates. Program (b) is
concurrent—it executes methods f() and g() in parallel. If method g() runs and completes before
f(), then the assertion in f() will fail when f() runs. This problem is an example of non-determinism:
methods f() and g() can run in either order. In one order, the assertion fails, while in the other it
does not. But since Harmony checks all possible executions, it will find the problematic one.

Figure 3.2 shows the output of running Figure 3.1(b) through Harmony. Underneath the line,
there is a summary of what happened in one of the executions. First, the initialization thread runs

1 shared = True
2

3 def f(): assert shared
4 def g(): shared = False
5

6 f()
7 g()

1 shared = True
2

3 def f(): assert shared
4 def g(): shared = False
5

6 spawn f()
7 spawn g()

(a) [code/prog1.hny] Sequential (b) [code/prog2.hny] Concurrent

Figure 3.1: A sequential and a concurrent program

19

https://harmony.cs.cornell.edu/code/prog1.hny
https://harmony.cs.cornell.edu/code/prog2.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 8)

– 10 states (time 0.00s, mem=0.000GB)

� Phase 3: analysis

– Safety Violation

� Phase 4: write results to code/prog2.hco
� Phase 5: loading code/prog2.hco

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line 1: Initialize shared to True
– Thread terminated

� Schedule thread T2: g()

– Line 4: Set shared to False (was True)
– Thread terminated

� Schedule thread T1: f()

– Line 3: Harmony assertion failed

Figure 3.2: The output of running the code in Figure 3.1(b)

20

1 count = 0
2 done = [False, False]
3

4 def incrementer(self):
5 count = count + 1
6 done[self] = True
7 await done[1 – self]
8 assert count == 2
9

10 spawn incrementer(0)
11 spawn incrementer(1)

Figure 3.3: [code/Up.hny] Incrementing the same variable twice in parallel

and sets the global variable shared to True. Then, the thread running g() runs to completion,
setting shared to False. Finally, the thread running f() runs, and the assertion fails.

Figure 3.3 presents a more subtle example that illustrates non-atomicity. The program initializes
two shared variables: an integer count and an array done with two booleans. The program then
spawns two threads. The first runs incrementer(0); the second runs incrementer(1).

Method incrementer takes a parameter called self. It increments count and sets done[self] to
True. It then waits until the other thread is done. (await c is shorthand for while not c: pass.)
After that, method incrementer verifies that the value of count equals 2.

Note that although the threads are spawned one at a time, they will execute concurrently. It is,
for example, quite possible that incrementer(1) finishes before incrementer(0) even gets going.
And because Harmony tries every possible execution, it will consider that particular execution as
well. What would the value of count be at the end of that execution?

� Before you run the program, what do you think will happen? Is the program
correct in that count will always end up being 2? (You may assume that load

and store instructions of the underlying virtual machine architecture are atomic
(indivisible)—in fact they are.)

What is going on is that the Harmony program is compiled to machine instructions, and it is
the machine instructions that are executed by the underlying Harmony machine. The details of this
appear in Chapter 4, but suffice it to say that the machine has instructions that load values from
memory and store values into memory. Importantly, it does not have instructions to atomically
increment or decrement values in shared memory locations. So, to increment a value in memory,
the machine must do at least three machine instructions. Figure 3.4 illustrates this. (The var
statement declares a new local variable register.) Conceptually, the machine

1. loads the value of count from its memory location into a register;

2. adds 1 to the register;

21

https://harmony.cs.cornell.edu/code/Up.hny

1 count = 0
2 done = [False, False]
3

4 def incrementer(self):
5 var register = count # load shared variable count into a private register
6 register += 1 # increment the register
7 count = register # store its value into variable count
8 done[self] = True
9 await done[1 – self]

10 assert count == 2
11

12 spawn incrementer(0)
13 spawn incrementer(1)

Figure 3.4: [code/Upr.hny] What actually happens in Figure 3.3

3. stores the new value into the memory location of count.

When running multiple threads, each essentially runs an instantiation of the machine, and they
do so in parallel. As they execute, their machine instructions are interleaved in unspecified and
often unpredictable ways. A program is correct if it works for any interleaving of threads. Harmony
will try all possible interleavings of the threads executing machine instructions.

If the threads run one at a time, then count will be incremented twice and ends up being 2.
However, the following is also a possible interleaving of incrementer(0) and incrementer(1):

1. incrementer(1) loads the value of count, which is 0;

2. incrementer(0) loads the value of count, which is still 0;

3. incrementer(0) adds 1 to the value that it loaded (0), and stores 1 into count ;

4. incrementer(1) adds 1 to the value that it loaded (0), and stores 1 into count ;

5. incrementer(1) sets done[1] to True;

6. incrementer(0) sets done[0] to True.

The result in this particular interleaving is that count ends up being 1. This is known as a
race condition. When running Harmony, it will report violations of assertions. It also provides an
example of an interleaving, like the one above, in which an assertion fails. Figure 3.5 shows the
output of running Figure 3.3 through Harmony.

If one thinks of the assertion as providing the specification of the program, then clearly its
implementation does not satisfy its specification. Either the specification or the implementation
(or both) must have a bug. We could change the specification by changing the assertion as follows:

22

https://harmony.cs.cornell.edu/code/Upr.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 8)

– 42 states (time 0.00s, mem=0.000GB)

� Phase 3: analysis

– Safety Violation

� Phase 4: write results to code/Up.hco
� Phase 5: loading code/Up.hco

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line 1: Initialize count to 0
– Line 2: Initialize done to [False, False]
– Thread terminated

� Schedule thread T2: incrementer(1)

– Preempted in incrementer(1) about to store 1 into count in line 5

� Schedule thread T1: incrementer(0)

– Line 5: Set count to 1 (was 0)
– Line 6: Set done[0] to True (was False)
– Preempted in incrementer(0)

� Schedule thread T2: incrementer(1)

– Line 5: Set count to 1 (unchanged)
– Line 6: Set done[1] to True (was False)
– Line 8: Harmony assertion failed

Figure 3.5: The output of running the code in Figure 3.3

23

1 count = 0
2

3 finally count == 2
4

5 def incrementer():
6 count = count + 1
7

8 spawn incrementer()
9 spawn incrementer()

Figure 3.6: [code/Upf.hny] Demonstrating the finally clause.

assert (count == 1) or (count == 2)

This would fix the issue,1

but more likely it is the program that must be fixed, not the specification.
Figure 3.3 uses flags done[0] and done[1] to check if both threads have finished incrementing

count. Harmony provides a more convenient way to check if some condition holds when all threads
have terminated. Figure 3.6 demonstrates the Harmony finally clause. The finally clause is like
the assert clause, but the condition is only checked when all threads have finished. This eliminates
the need for a shared variable like done, simplifies the code, and makes the intention clearer.

The exercises below have you try the same thing (having threads concurrently increment an
integer variable) in Python. As you will see, the bug is not easily triggered when you run a Python
version of the program. But in Harmony Murphy’s Law applies: if something can go wrong, it will.
Usually that is not a good thing, but in Harmony it is. It allows you to find bugs in your concurrent
programs much more easily than with a conventional programming environment.

Exercises

3.1 Harmony programs can usually be easily translated into Python by hand. For example, Fig-
ure 3.7 is a Python version of Figure 3.3.

1. Run Figure 3.7 using Python. Does the assertion fail?

2. Using a script, run Figure 3.7 1000 times. For example, if you are using the bash shell (in
Linux or Mac OS X, say), you can do the following:

for i in {1..1000}

do

python Up.py

done

1Actually, Harmony still complains, this time about a data race, about which you will learn in Chapter 4.

24

https://harmony.cs.cornell.edu/code/Upf.hny

1 import threading

2

3 count = 0

4 done = [False, False]

5

6 def incrementer(self):

7 global count

8 count = count + 1

9 done[self] = True

10 while not done[1 - self]:

11 pass

12 assert count == 2

13

14 threading.Thread(target=incrementer, args=(0,)).start()

15 threading.Thread(target=incrementer, args=(1,)).start()

Figure 3.7: [python/Up.py] Python implementation of Figure 3.3

If you’re using Windows, the following batch script does the trick:

FOR /L %%i IN (1, 1, 1000) DO python Up.py

PAUSE

How many times does the assertion fail (if any)?

3.2 Figure 3.8 is a version of Figure 3.7 that has each incrementer thread increment count N times.
Run Figure 3.8 10 times (using Python). Report how many times the assertion fails and what the
value of count was for each of the failed runs. Also experiment with lower values of N. How large
does N need to be for assertions to fail? (Try powers of 10 for N.)

3.3 Can you think of a fix to Figure 3.3? Try one or two different fixes and run them through
Harmony. Do not worry about having to come up with a correct fix at this time—the important
thing is to develop an understanding of concurrency. (Also, you do not get to use the atomically
keyword or a lock, yet.)

25

https://harmony.cs.cornell.edu/python/Up.py

1 import threading

2

3 N = 1000000

4 count = 0

5 done = [False, False]

6

7 def incrementer(self):

8 global count

9 for i in range(N):

10 count = count + 1

11 done[self] = True

12 while not done[1 - self]:

13 pass

14 assert count == 2*N, count

15

16 threading.Thread(target=incrementer, args=(0,)).start()

17 threading.Thread(target=incrementer, args=(1,)).start()

Figure 3.8: [python/UpMany.py] Using Python to increment N times

26

https://harmony.cs.cornell.edu/python/UpMany.py

Chapter 4

The Harmony Virtual Machine

Harmony programs are compiled to Harmony bytecode (a list of machine instructions for a virtual
machine), which in turn is executed by the Harmony virtual machine (HVM). The Harmony
compiler, harmony, places the bytecode for file x.hny in file x.hvm. The model checker (called
Charm) executes the code in x.hvm and places its output in a file called x.hco. From the x.hco file,
harmony creates a detailed human-readable output file in x.hvb and an interactive HTML file called
x.htm. The x.htm file is automatically opened in your default web browser unless you specify the
--noweb flag to harmony.

To understand the problem of concurrent computing, it is important to have a basic under-
standing of machine instructions, and in our case those of the HVM.

Harmony Values

Harmony programs, and indeed the HVM, manipulate Harmony values. Harmony values are recur-
sively defined: they include booleans (False and True), integers (but not floating point numbers),
strings (enclosed by single or double quotes), sets and lists of Harmony values, and dictionaries that
map Harmony values to other Harmony values. Strings that start with a letter or an underscore
and only contain letters, digits, and underscores can be written without quotes by preceding it with
a dot. So, .example is the same string as "example".

A dictionary maps keys to values. Unlike Python, which requires that keys must be hashable,
any Harmony value can be a key, including another dictionary. Dictionaries are written as {k0 :
v0, k1 : v1, ...}. The empty dictionary is written as {:}. If d is a dictionary, and k is a key, then
the following expression retrieves the Harmony value that k maps to in d :

d k

The meaning of d a b ... is (((d a) b) ...). This notation is unfamiliar to Python programmers,
but in Harmony square brackets can be used in the same way as parentheses, so you can express
the same thing in the form that is familiar to Python programmers:

27

d [k]

However, if d = { .count : 3 }, then you can write d.count (which has value 3) instead of having
to write d [.count] or d ["count"] (although any of those will work). Thus a dictionary can be made
to look much like a Python object.

In Harmony (unlike Python), lists and tuples are the same type. As in Python, you can create
a singleton tuple (or list) by including a comma. For example, (1,) is a tuple consisting just of the
number 1. Importantly, (1) = 1 ̸= (1,). Because, square brackets and parentheses work the same
in Harmony, [a, b, c] (which looks like a Python list) is the same Harmony value as (a, b, c) (which
looks like a Python tuple). So, if x = [False, True], then x [0] = False and x [1] = True, just
like in Python. However, when creating a singleton list, make sure you include the comma, as in
[False,]. The expression [False] just means False.

Harmony is not an object-oriented language, so objects don’t have built-in methods. However,
Harmony does have some powerful operators to make up for some of that. For example, dictionaries
have two handy unary operators. If d is a dictionary, then keys d (or equivalently keys(d)) returns
the set of keys and len d returns the size of this set.

Section A.1 provides details on all the types of values that Harmony currently supports.

Harmony Bytecode

A Harmony program is translated into HVM bytecode. To make it amenable to efficient model
checking, the HVM is not an ordinary virtual machine, but its architecture is nonetheless represen-
tative of conventional computers and virtual machines such as the Java Virtual Machine.

Instead of bits and bytes, a HVM manipulates Harmony values. A HVM has the following
components:

� Code: This is an immutable and finite list of HVM instructions, generated from a Harmony
program. The types of instructions will be described later.

� Shared memory: A HVM has just one memory location containing a Harmony value.

� Threads: Any thread can spawn an unbounded number of other threads and threads may
terminate. Each thread has a program counter that indexes into the code, a stack of Harmony
values, and a private register that contains a Harmony value.1

The register of a thread contains the local variables of the method that the thread is currently
executing. It is saved and restored by method invocations. The state of a thread is called a context
(aka continuation): it contains the values of its program counter, stack, and registers. The HVM
state consists of the value of its memory and the multiset (or bag) of contexts. It is a multiset of
contexts because two threads can have the same context at the same time.

It may seem strange that there is only one memory location. However, this is not a limitation
because Harmony values are unbounded trees. The shared memory is a dictionary that maps
strings (names of shared variables) to other Harmony values. We call this a directory. Thus, a
directory represents the state of a collection of variables named by the strings. Because directories
are Harmony values themselves and Harmony values include dictionaries and lists that themselves

1Currently, another thread register contains thread-local data. We do not use it (yet) in this book.

28

0 Frame __init__ ()

code/Up.hny:1 count = 0

1 Push 0

2 Store count

code/Up.hny:2 done = [False, False]

3 Push [False, False]

4 Store done

code/Up.hny:4 def incrementer(self):

5 Jump 35

6 Frame incrementer self

code/Up.hny:5 count = count + 1

7 Load count

8 Push 1

9 2-ary +

10 Store count

Figure 4.1: The first part of the HVM bytecode corresponding to Figure 3.3

contain other Harmony values, directories can be organized into a tree. Each node in a directory
tree is then identified by a sequence of Harmony values, like a path name in the file system hierarchy.
We call such a sequence an address. For example, in Figure 3.3 the memory is a dictionary with
two entries: .count and done. And the value of entry done is a list with indexes 0 and 1. So, for
example, the address of done[0] is the sequence [done, 0]. An address is itself a Harmony value.

Compiling the code in Figure 3.3 results in the HVM bytecode listed in Figure 4.1. You can
obtain this code by invoking harmony with the -a flag like so:

harmony -a Up.hny

Each thread in the HVM is predominantly a stack machine, but it also a register. Like shared
memory, the register contains a dictionary so it can represent the values of multiple named variables.
All instructions are atomically executed. The Harmony memory model is sequentially consistent : all
accesses are in program order. Most instructions pop values from the stack or push values onto the
stack. At first there is one thread, named init , which initializes the state. It starts executing at
instruction 0 and keeps executing until it reaches the last instruction in the program. In this case,
it executes instructions 0 through 5 first. The last instruction in that sequence is a JUMP instruction
that sets the program counter to 35 (skipping over the code for incrementermethod). The init

thread then executes the remaining instructions and finishes. Once initialization completes, any
threads that were spawned (in this case incrementer(0) and incrementer(1)) can run.

At program counter 6 is the code for the incrementer method. All methods start with a Frame

instruction and end with a Return instruction. Section C.1 provides a list of all HVM machine
instructions, in case you want to read about the details. The Frame instruction lists the name of
the method and the names of its arguments. The code generated from count := count + 1 in Line
5 of Up.hny is as follows (see Figure 4.1):

29

8. The Load instruction pushes the value of the count variable onto the stack.

9. The Push instruction pushes the constant 1 onto the stack of the thread.

10. 2-ary is a + operation with 2 arguments. It pops two values from the stack (the value of
count and 1), adds them, and pushes the result back onto the stack.

11. The Store instruction pops a Harmony value (the sum of the count variable and 1) and stores
it in the count variable.

You can think of Harmony as trying every possible interleaving of threads executing instructions.
Harmony can report the following failure types:

� Safety violation: This means something went wrong with at least one of the executions of
the program that it tried. This can include a failing assertion, behavior violations, divide by
zero, using an uninitialized or non-existent variable, dividing a set by an integer, and so on.
Harmony will print a trace of the shortest bad execution that it found.

� Non-terminating State: Harmony found one or more states from which there does not
exist an execution such that all threads terminate. Harmony will not only print the non-
terminating state with the shortest trace, but also the list of threads at that state, along with
their program counters.

� Behavior Violation: The program can terminate in a state not allowed by the behavioral
specification (Chapter 13).

� Active Busy Waiting: There are states in which some thread cannot make progress without
the help of another thread, but does not block (Chapter 15).

� Data Race: There are states in which two or more threads concurrently access a shared
variable, at least one of which is a store operation (Chapter 10).

Harmony checks for these types of failure conditions in the given order: if there are multiple
failure conditions, only the first is reported. Active busy waiting (Chapter 15) is not technically
an indication of a synchronization problem, but instead an indication of an inefficient solution to
a synchronization problem— one that uses up CPU cycles unnecessarily. A data race may not
be a bug either—whether or not it is might depend on the semantics of the underlying memory
operations and are therefore generally undesirable. Harmony may also warn about behaviors, in
particular if the generated behavior is only a subset of the provided behavior.

Harmony generates a detailed and self-explanatory text output file (see code/Up.hvb) and an
interactive HTML file that allows exploring more details of the execution. Open the suggested
HTML file and you should see something like Figure 4.2.

In the top right, the HTML file contains the reported issue in red. Underneath it, a table shows
the four turns in the execution. Instead of listing explicitly the program counters of the executed
instructions, the HTML file contains a list of blocks for each executed instruction. We call this the
timeline. You can click on such a block to see the state of the Harmony virtual machine just after
executing the corresponding instruction. If a thread has finished its turn, there is also information
on the status of that thread. For example, at the end of turn 2, incrementer[0] is about to store
the value 1 in variable count, but at that point is preempted by incrementer[1]. The table also
lists the program counter of the thread at each turn, the values of the shared variables, and any

30

Figure 4.2: The HTML output of running Harmony on Figure 3.3

31

https://harmony.cs.cornell.edu/output/Up.html

values the thread may have printed (none in this case). Underneath the table it shows the line of
Harmony source code that is being executed in blue (with the specific part of the line that is being
evaluated in green), and the HVM instruction that is about to be executed in green (along with an
explanation in parentheses).

The bottom left shows the bytecode of the program being executed. It has alternating grey and
white sections. Each section corresponds to a line of Harmony code. The instruction that is about
to be executed, if any, is highlighted in red. (In this case, the state shown is a failed state and no
instruction will be executed next.) If you hover the mouse over a machine instruction, it provides
a brief explanation of what the instruction does.

The bottom right contains a table with the state of each thread. Status information for a thread
can include:

� runnable: the thread is runnable but not currently running. In Harmony, threads are inter-
leaved and so at most one thread is actually running;

� running: the thread is currently executing instructions;

� terminated: the thread has completed all its instructions;

� failed: the thread has encountered an error, such as violating an assertion or divide by zero;

� blocked: the thread cannot make progress until another thread has updated the shared state.
For example, this occurs when one of the implementers is waiting for the other to set its done
flag;

� atomic: the thread is in atomic mode, not allowing other threads to be scheduled. This is,
for example, the case when an assertion is being checked;

� read-only: the thread is in read-only mode, not able to modify shared state. Assertions
can execute arbitrary code including methods, but they are not allowed to modify the shared
state.

The stack of each thread is subdivided into two parts: the stack trace and the stack top. A stack
trace is a list of methods that are being invoked. In this case, the incrementer method does not
invoke any other methods, and so the list is of length 1. For each entry in the stack trace, it shows
the method name and arguments, as well as the variables of the method. The stack top shows the
values on the stack beyond the stack trace.

When you load the HTML file, it shows the state after executing the last instruction. As
mentioned above, you can go to any point in the execution by clicking on one of the blocks in the
timeline. When you do so, the current turn and thread will be highlighted in green. There are also

various handy keyboard shortcuts:

Right arrow : go to the next instruction;
Left arrow : go to the previous instruction;
Down arrow : go to the next turn;
Up arrow : go to the previous turn;
Enter (aka Return): go to the next line of Harmony code;
0 : go to the initial state.

32

1 count = 0
2

3 entered = done = [False, False]
4

5 def incrementer(self):
6 entered [self] = True
7 if entered [1 – self]: # if the other thread has already started
8 await done[1 – self] # wait until it is done
9 count = count + 1

10 done[self] = True
11 await done[1 – self]
12 assert count == 2
13

14 spawn incrementer(0)
15 spawn incrementer(1)

Figure 4.3: [code/UpEnter.hny] Incorrect attempt at fixing the code of Figure 3.3

If you want to see an animation of the entire execution, one instruction at a time, you can first
hit 0 and then hold down the right arrow. If you want to see it one line of Harmony code at a time,
hold down the enter (aka return) key instead. If you hold down the down arrow key, the movie will
go by very quickly.

Exercises

4.1 Figure 4.3 shows an attempt at trying to fix the code of Figure 3.3. Run it through Harmony
and see what happens. Based on the error output, describe in English what is wrong with the code
by describing, in broad steps, how running the program can get into a bad state.

4.2 What if we moved Line 5 of Figure 4.3 to after the if statement (between Lines 7 and 8)? Do
you think that would work? Run it through Harmony and describe either why it works or why it
does not work.

33

https://harmony.cs.cornell.edu/code/UpEnter.hny

Chapter 5

Critical Sections

Hopefully you have started thinking of how to solve the concurrency problem and you may already
have prototyped some solutions. In this chapter, we will go through a few reasonable but broken
attempts. At the heart of the problem is that we would like make sure that, when the count variable
is being updated, no other thread is trying to do the same thing. This is called a critical section
(aka critical region) [Dij62, Dij65b, Dij65a]: a set of instructions where only one thread is allowed
to execute at a time.

Critical sections are useful when accessing a shared data structure, particularly when that
access requires multiple underlying machine instructions. A counter is a very simple example of
a data structure (it is an array of bits), but—as we have seen—incrementing it requires multiple
instructions. A more involved one would be accessing a binary tree. Adding a node to a binary tree,
or re-balancing a tree, often requires multiple operations. Maintaining “consistency” is certainly
much easier if during this time no other thread also tries to access the binary tree. Typically, you
want some invariant property of the data structure to hold at the beginning and at the end of the
critical section, but in the middle the invariant may be temporarily broken—this is not a problem
as critical sections guarantee that no other thread will be able to see it. An implementation of a
data structure that can be safely accessed by multiple threads and is free of race conditions is called
thread-safe.

1 def thread():
2 while True:
3 # Critical section is here
4 pass
5

6 spawn thread()
7 spawn thread()

Figure 5.1: [code/csbarebones.hny] Modeling a critical section

34

https://harmony.cs.cornell.edu/code/csbarebones.hny

1 # number of threads in the critical section
2 in cs = 0
3 invariant in cs in { 0, 1 }
4

5 def thread():
6 while choose { False, True }:
7 # Enter critical section
8 atomically in cs += 1
9

10 # Critical section is here
11 pass
12

13 # Exit critical section
14 atomically in cs –= 1
15

16 spawn thread()
17 spawn thread()

Figure 5.2: [code/cs.hny] Harmony model of a critical section

A critical section is often modeled as threads in an infinite loop entering and exiting the critical
section. Figure 5.1 shows the Harmony code. We need to ensure is that there can never be two
threads in the critical section. This property is called mutual exclusion. Mutual exclusion by itself
is easy to ensure. For example, we could insert the following code to enter the critical section:

await False

This code will surely prevent two or more threads from executing in the critical section at the
same time. But it does so by preventing any thread from reaching the critical section. We clearly
need another property besides mutual exclusion.

Mutual exclusion is an example of a safety property, a property that ensures that nothing bad
will happen, in this case two threads being in the critical section. What we need now is a liveness
property : we want to ensure that eventually something good will happen. There are various possible
liveness properties we could use, but here we will propose the following informally: if (1) there
exists a non-empty set S of threads that are trying to enter the critical section and (2) threads in
the critical section always leave eventually, then eventually one thread in S will enter the critical
section. We call this progress.

In order to detect violations of progress, and other liveness problems in algorithms in general,
Harmony requires that every execution must be able to reach a state in which all threads have
terminated. Clearly, even if mutual exclusion holds in Figure 5.1, the spawned threads never
terminate.

We will instead model threads in critical sections using the framework in Figure 5.2: a thread
can choose to enter a critical section more than once, but it can also choose to terminate, even

35

https://harmony.cs.cornell.edu/code/cs.hny

without entering the critical section ever. (Recall that Harmony will try every possible execution,
and so it will evaluate both choices.) As it turns out, there is an advantage to doing it this way: we
can also test if a thread can enter when there is no other thread trying to enter the critical section.
As we will see below, this is not always obvious.

Moreover, this code specifies that at most one thread can be executing in the critical section.
It does this using a counter in cs that is atomically incremented when entering the critical section
and atomically decremented when leaving the critical section. The code specifies the invariant that
in cs must be either 0 or 1. You can think of this as the type of in cs.

We will now consider various approaches toward implementing this specification.

You may already have heard of the concept of a lock and have realized that it could be used to
implement a critical section. The idea is that the lock is like a baton that at most one thread can
own (or hold) at a time. A thread that wants to enter the critical section at a time must obtain
the lock first and release it upon exiting the critical section.

Using a lock is a good thought, but how does one implement one? Figure 5.3 presents an
attempt at mutual exclusion based on a näıve (and, as it turns out, incorrect) implementation of
a lock. Initially the lock is not owned, indicated by lockTaken being False. To enter the critical
section, a thread waits until lockTaken is False and then sets it to True to indicate that the lock
has been taken. The thread then executes the critical section. Finally, the thread releases the lock
by setting lockTaken back to False.

Unfortunately, if we run the program through Harmony, we find that the assertion fails. Fig-
ure 5.3 also shows the Harmony output. thread(1) finds that the lock is available, but just before
it stores True in lockTaken, thread(0) gets to run. (Recall that you can hover your mouse over a
machine instruction in order to see what it does.) Because lockTaken is still False, it too believes
it can acquire the lock, and stores True in lockTaken and moves on to the critical section. Finally,
thread(1) moves on, also stores True into lockTaken and also moves into the critical section. The
lockTaken variable suffers from the same sort of race condition as the count variable in Figure 3.3:
testing and setting the lock consists of several instructions. It is thus possible for both threads to
believe the lock is available and to obtain the lock at the same time.

Preventing multiple threads from updating the same variable, Figure 5.4 presents a solution
based on each thread having a flag indicating that it is trying to enter the critical section. A thread
can write its own flag and read the flag of its peer. After setting its flag, the thread waits until
the other thread (1 − self) is not trying to enter the critical section. If we run this program, the
assertion does not fail. In fact, this solution does prevent both threads being in the critical section
at the same time.

To see why, first note the following invariant: if thread i is in the critical section, then
flags[i] = True. Without loss of generality, suppose that thread 0 sets flags[0] at time t0. Thread 0
can only reach the critical section if at some time t1, t1 > t0, it finds that flags[1] = False. Because
of the invariant, flags[1] = False implies that thread 1 is not in the critical section at time t1. Let
t2 be the time at which thread 0 sets flags[0] to False. Thread 0 is in the critical section sometime
between t1 and t2. It is easy to see that thread 1 cannot enter the critical section between t1 and
t2, because flags[1] = False at time t1. To reach the critical section between t1 and t2, it would
first have to set flags[1] to True and then wait until flags[0] = False. But that does not happen
until time t2.

However, if you run the program through Harmony, it turns out the solution does have a problem:
if both try to enter the critical section at the same time, they may end up waiting for one another

36

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 lockTaken = False
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 await not lockTaken

10 lockTaken = True
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17 lockTaken = False
18

19 spawn thread(0)
20 spawn thread(1)

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line 1: Initialize in cs to 0
– Line 4: Initialize lockTaken to False
– Thread terminated

� Schedule thread T3: thread(1)

– Line 7: Choose True
– Preempted in thread(1) about to store True into lockTaken in line 10

� Schedule thread T2: thread(0)

– Line 7: Choose True
– Line 10: Set lockTaken to True (was False)
– Line 12: Set in cs to 1 (was 0)
– Preempted in thread(0) about to execute atomic section in line 14

� Schedule thread T3: thread(1)

– Line 10: Set lockTaken to True (unchanged)
– Line 12: Set in cs to 2 (was 1)
– Preempted in thread(1) about to execute atomic section in line 14

� Schedule thread T1: invariant()

– Line 2: Harmony assertion failed

Figure 5.3: [code/naiveLock.hny] Näıve implementation of a shared lock and the markdown output
of running Harmony

37

https://harmony.cs.cornell.edu/code/naiveLock.hny

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 flags = [False, False]
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 flags[self] = True

10 await not flags[1 – self]
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17 flags[self] = False
18

19 spawn thread(0)
20 spawn thread(1)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line 1: Initialize in cs to 0
– Line 4: Initialize flags to [False, False]
– Thread terminated

� Schedule thread T1: thread(0)

– Line 7: Choose True
– Line 9: Set flags[0] to True (was False)
– Preempted in thread(0) about to load variable flags[1] in line 10

� Schedule thread T2: thread(1)

– Line 7: Choose True
– Line 9: Set flags[1] to True (was False)
– Preempted in thread(1) about to load variable flags[0] in line 10

Final state (all threads have terminated or are blocked):

� Threads:

– T1: (blocked) thread(0)

* about to load variable flags[1] in line 10

– T2: (blocked) thread(1)

* about to load variable flags[0] in line 10

Figure 5.4: [code/naiveFlags.hny] Näıve use of flags to solve mutual exclusion

38

https://harmony.cs.cornell.edu/code/naiveFlags.hny

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 turn = 0
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 turn = 1 – self

10 await turn == self
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17

18 spawn thread(0)
19 spawn thread(1)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line 1: Initialize in cs to 0
– Line 4: Initialize turn to 0
– Thread terminated

� Schedule thread T2: thread(1)

– Line 7: Choose False
– Thread terminated

� Schedule thread T1: thread(0)

– Line 7: Choose True
– Line 9: Set turn to 1 (was 0)
– Preempted in thread(0) about to load variable turn in line 10

Final state (all threads have terminated or are blocked):

� Threads:

– T1: (blocked) thread(0)

* about to load variable turn in line 10

– T2: (terminated) thread(1)

Figure 5.5: [code/naiveTurn.hny] Näıve use of turn variable to solve mutual exclusion

39

https://harmony.cs.cornell.edu/code/naiveTurn.hny

indefinitely. (This is a form of deadlock, which will be discussed in Chapter 19.) Thus the solution
violates progress.

The final näıve solution that we propose is based on a variable called turn. Each thread politely
lets the other thread have a turn first. When turn = i, thread i can enter the critical section, while
thread 1− i has to wait. An invariant of this solution is that while thread i is in the critical section,
turn = i. Since turn cannot be 0 and 1 at the same time, mutual exclusion is satisfied. The solution
also has the nice property that the thread that has been waiting the longest to enter the critical
section can go next.

Run the program through Harmony. It turns out that this solution also violates progress, albeit
for a different reason: if thread i terminates instead of entering the critical section, thread 1 − i,
politely, ends up waiting indefinitely for its turn. Too bad, because it would have been a great
solution if both threads try to enter the critical section ad infinitum.

Exercises

5.1 Run Figure 5.2 using Harmony. As there is no protection of the critical section, mutual
exclusion is violated, the assertion should fail, and a trace should be reported. Now insert

await False

just before entering the critical section in Figure 5.2 and run Harmony again. Mutual exclusion
is guaranteed but progress is violated. Harmony should print a trace to a state from which a
terminating state cannot be reached. Describe in English the difference in the failure reports before
and after inserting the code.

5.2 See if you can come up with some different approaches that satisfy both mutual exclusion and
progress. Try them with Harmony and see if they work or not. If they don’t, try to understand
why. If you get active busy waiting or data race reports, you probably found a correct solution;
you’ll learn later how to suppress those. Do not despair if you can’t figure out how to develop a
solution that satisfies both mutual exclusion and progress—as we will find out, it is possible but
not obvious.

40

Chapter 6

Peterson’s Algorithm

In 1981, Gary L. Peterson came up with a beautiful solution to the mutual exclusion problem,
now known as “Peterson’s Algorithm” [Pet81]. The algorithm is an amalgam of the (incorrect)
algorithms in Figure 5.4 and Figure 5.5, and is presented in Figure 6.1. (The first line specifies that
the flags and turn variables are assumed to satisfy sequential consistency—it prevents Harmony
from complaining about data races involving these variables, explained in Chapter 9.)

A thread first indicates its interest in entering the critical section by setting its flag. It then
politely gives way to the other thread should it also want to enter the critical section—if both do
so at the same time one will win because writes to memory in Harmony are atomic. The thread
continues to be polite, waiting until either the other thread is nowhere near the critical section
(flag [1 – self] = False) or has given way (turn = self). Running the algorithm with Harmony
shows that it satisfies both mutual exclusion and progress.

Why does it work? We will focus here on how one might go about proving mutual exclusion
for an algorithm such as Peterson’s. It turns out that doing so is not easy. If you are interested
in learning more about concurrent programming but not necessarily in how to prove concurrent
programs correct, you may choose to skip the rest of this chapter. If you are still here, you have to
understand a little bit more about how the Harmony virtual machine (HVM) works. In Chapter 4
we talked about the concept of state: at any point in time the HVM is in a specific state. A state is
comprised of the values of the shared variables as well as the values of the thread variables of each
thread, including its program counter and the contents of its stack. Each time a thread executes
a HVM machine instruction, the state changes (if only because the program counter of the thread
changes). We call that a step. Steps in Harmony are atomic.

The HVM starts in an initial state in which there is only one thread (init ()) and its program
counter is 0. A trace is a sequence of steps starting from the initial state, resulting in a sequence of
states. When making a step, there are two sources of non-determinism in Harmony. One is when
there is more than one thread that can make a step. The other is when a thread executes a choose
operation and there is more than one choice. Because there is non-determinism, there are multiple
possible traces. We call a state reachable if it is either the initial state or it can be reached from
the initial state through a finite trace. A state is final when there are no threads left to make state
changes.

41

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 sequential flags, turn
5 flags = [False, False]
6 turn = choose({0, 1})
7

8 def thread(self):
9 while choose({ False, True }):

10 # Enter critical section
11 flags[self] = True
12 turn = 1 – self
13 await (not flags[1 – self]) or (turn == self)
14

15 atomically in cs += 1
16 # Critical section
17 atomically in cs –= 1
18

19 # Leave critical section
20 flags[self] = False
21

22 spawn thread(0)
23 spawn thread(1)

Figure 6.1: [code/Peterson.hny] Peterson’s Algorithm

Figure 6.2: Venn diagram classifying all states and a trace

42

https://harmony.cs.cornell.edu/code/Peterson.hny

It is often useful to classify states. Initial, final, and reachable, and unreachable are all examples
of classes of states. Figure 6.2 depicts a Venn diagram of various classes of states and a trace. One
way to classify states is to define a predicate over states. All states in which x = 1, or all states
where there are two or more threads executing, are examples of such predicates. For our purposes,
it is useful to define a predicate that says that at most one thread is in the critical section. We
shall call such states exclusive.

An invariant of a program is a predicate that holds over all states that are reachable by that
program. We want to show that exclusivity is an invariant because mutual exclusion means that
all reachable states are exclusive. In other words, we want to show that the set of reachable states
of executing the program is a subset of the set of states where there is at most one thread in the
critical section.

One way to prove that a predicate is an invariant is through induction on the number of steps.
First you prove that the predicate holds over the initial state. Then you prove that for every
reachable state, and for every step from that reachable state, the predicate also holds over the
resulting state. For this to work you would need a predicate that describes exactly which states are
reachable. But we do not have such a predicate: we know how to define the set of reachable states
inductively, but—given an arbitrary state—it is not easy to see whether it is reachable or not.

To solve this problem, we will use what is called an inductive invariant. An inductive invariant
I is a predicate over states that satisfies the following:

� I holds in the initial state.

� For any state in which I holds (including unreachable ones) and for any thread in the state,
if the thread takes a step, then I also holds in the resulting state.

One candidate for such a predicate is exclusivity itself. After all, it certainly holds over the
initial state. And as Harmony has already determined, exclusivity is an invariant: it holds over
every reachable state. Unfortunately, exclusivity is not an inductive invariant. To see why, consider
the following state s: let thread 0 be at label cs and thread 1 be at the start of the await statement.
Also, in state s, turn = 1. Now let thread 1 make a step. Because turn = 1, thread 1 will stop
waiting and also enter the critical section, entering a state that is not exclusive. So, exclusivity is
an invariant (holds over every reachable state, as demonstrated by Harmony), but not an inductive
invariant. It will turn out that s is not reachable.

We are looking for an inductive invariant that implies exclusivity. In other words, the set of
states where the inductive invariant holds must be a subset of the set of states where there is at
most one thread in the critical section.

Let us begin with considering the following important property: F(i) = thread(i)@[10 · · · 17] ⇒
flags[i], that is, if thread i is executing in lines 10 through 17, then flags[i] is set. Although it does
not, by itself, imply exclusivity, we can show that F(i) is an inductive invariant (for both threads
0 and 1). To wit, it holds in the initial state, because in the initial state thread i does not even
exist yet. Now we have to show that if F(i) holds in some state, then F(i) also holds in a next
state. Since only thread i ever changes flags[i], we only need to consider steps by thread i. Since
F(i) holds, there are two cases to consider:

1. states in which flags[i] = true

2. states in which ¬thread(i)@[10 · · · 17] (because false implies anything)

43

In each case, we need to show that if thread i takes a step, then F(i) still holds. In the first case,
there is only one step that thread i can take that would set flags[i] to false: the step from line 17 to
line 18. But executing the line would also take the thread out of lines 10 · · · 17, so F(i) continues
to hold. In the second case (thread i is not executing in lines 10 · · · 17), the only step that would
cause thread i to execute in lines 10 · · · 17 would be the step in line 9. But in that case flags[i]
would end up being true, so F(i) continues to hold as well. So, F(i) is an inductive invariant (for
both threads 0 and 1).

While F(i) does not imply mutual exclusion, it does imply the following useful invariant:
thread(i)@cs ⇒ flags[i]: when thread i is at the critical section, flags[i] is set. This seems obvious
from the code, but now you know how to prove it. We will use a similar technique to prove the
exclusivity is invariant.

We need a stronger inductive invariant than F(i) to prove mutual exclusion. What else do we
know when thread i is in the critical section? Let C(i) = ¬flags[1 − i] ∨ turn = i, that is, the
condition on the await statement for thread i. In a sequential program, C(i) would clearly hold if
thread i is in the critical section: thread(i)@cs ⇒ C(i). However, because thread 1− i is executing
concurrently, this property does not hold. You can use Harmony to verify this. Just place the
following command in the critical section of the program:

assert (not flags[1 – self]) or (turn == self)

When running Harmony, this assertion will fail. You can check the HTML output to see what
happened. Suppose thread 0 is at the critical section, flags[0] = true, turn = 1, and thread 1 just
finished the step in line 7, setting flags[1] to true. Then C(0) is violated. But it suggests a new
property: G(i) = thread(i)@cs ⇒ C(i) ∨ thread(1 − i)@12. That is, if thread i is at the critical
section, then either C(i) holds or thread 1− i is about to execute line 12.

G(i) is an invariant for i = 0, 1. Moreover, if F(i) and G(i) both hold for i = 0, 1, then mutual
exclusion holds. We can show this using proof by contradiction. Suppose mutual exclusion is
violated and thus both threads are in the critical section. By F it must be the case that both
flags are true. By G and the fact that neither thread is about to execute Line 12, we know that
both C(0) and C(1) must hold. This then implies that turn = 0 ∧ turn = 1, providing the desired
contradiction.

We claim that G(i) is an inductive invariant. First, since neither thread in in the critical section
in the initial state, it is clear that G(i) holds in the initial state. Without loss of generality, suppose
i = 0 (a benefit from the fact that the algorithm is symmetric for both threads). We still have to
show that if we are in a state in which G(0) holds, then any step will result in a state in which G(0)
still holds.

First consider the case that thread 0 is at label cs. If thread 0 were to take a step, then in the
next state thread 0 would be no longer at that label and G(0) would hold trivially over the next
state. Therefore we only need to consider a step by thread 1. From G we know that one of the
following three cases must hold before thread 1 takes a step:

1. flags[1] = False;

2. turn = 0;

3. thread 1 is about to execute Line 12.

44

Let us consider each of these cases. We have to show that if thread 1 takes a step, then one
of those cases must hold after the step. In the first case, if thread 1 takes a step, there are two
possibilities: either flags[1] will still be False (in which case the first case continues to hold), or
flags[1] will be True and thread 1 will be about to execute Line 12 (in which case the third case
will hold). We know that thread 1 never sets turn to 1, so if the second case holds before the step,
it will also hold after the step. Finally, if thread 1 is about to execute Line 12 before the step, then
after the step turn will equal 0, and therefore the second case will hold after the step.

Now consider the case where thread 0 is not in the critical section, and therefore G(0) holds
trivially because false implies anything. There are three cases to consider:

1. Thread 1 takes a step. But then thread 0 is still not in the critical section and G(0) continues
to hold;

2. Thread 0 takes a step but still is not in the critical section. Then again G(0) continues to
hold.

3. Thread 0 takes a step and ends up in the critical section. Because thread 0 entered the critical
section, we know that flags}[1] = False or turn = 0 because of the await condition. And
hence G(0) continues to hold in that case as well.

We have now demonstrated mutual exclusion in Peterson’s Algorithm in two different ways: one
by letting Harmony explore all possible executions, the other using inductive invariants and proof
by induction. The former is certainly easier, but it does not provide intuition for why the algorithm
works. The second provides much more insight.

Even though they are not strictly necessary, we encourage you to include invariants in your
Harmony code. They can provide important insights into why the code works.

A cool anecdote is the following. When the author of Harmony had to teach Peterson’s Al-
gorithm, he refreshed his memory by looking at the Wikipedia page. The page claimed that the
following predicate is invariant: if thread i is in the critical section, then C(i) (i.e., G without the
disjunct that thread 1− i is about to execute Line 12. We already saw that this is not an invariant.
(The author fixed the Wikipedia page with the help of Fred B. Schneider.)

This anecdote suggests the following. If you need to do a proof by induction of an algorithm,
you have to come up with an inductive invariant. Before trying to prove the algorithm, you can
check that the predicate is at least invariant by testing it using Harmony. Doing so could potentially
avoid wasting your time on a proof that will not work because the predicate is not invariant, and
therefore not an inductive invariant either. Moreover, analyzing the counterexample provided by
Harmony may well suggest how to fix the predicate.

Exercises

6.1 Figure 6.3 presents another solution to the mutual exclusion problem. It is similar to the one
in Figure 5.4, but has a thread back out and try again if it finds that the other thread is either
trying to enter the critical section or already has. Compare this algorithm with Peterson’s. Why
does Harmony complain about active busy waiting? Does the algorithm guarantee that at least one
thread can enter the critical section?

6.2 Can you find one or more inductive invariants for the algorithm in Figure 6.3 to prove it
correct? Here’s a pseudo-code version of the algorithm to help you. Each line is an atomic action:

45

initially: flagX = flagY = False

thread X: thread Y:

X0: flagX = True Y0: flagY = True

X1: if not flagY goto X4 Y1: if not flagX goto Y4

X2: flagX = False Y2: flagY = False

X3: goto X0 Y3: goto Y0

X4: ...critical section... Y4: ...critical section...

X5: flagX = False Y5: flagY = False

6.3 A colleague of the author asked if the first two assignments in Peterson’s algorithm (setting
flags[self] to True and turn to 1 – self can be reversed. After all, they are different variables
assigned independent values—in a sequential program one could surely swap the two assignments.
See if you can figure out for yourself if the two assignments can be reversed. Then run the program
in Figure 6.1 after reversing the two assignments and describe in English what happens.

6.4 Bonus question: Can you generalize Peterson’s algorithm to more than two threads?

6.5 Bonus question: Implement Dekker’s Algorithm, Dijkstra’s Algorthm [Dij65b], Eisenstein and
McGuire’s Algorithm, Szymański’s Algorithm, or Lamport’s Bakery Algorithm. Note that the last
one uses unbounded state, so you should modify the threads so they only try to enter the critical
section a bounded number of times.

46

https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Eisenberg_&_McGuire_algorithm
https://en.wikipedia.org/wiki/Eisenberg_&_McGuire_algorithm
https://en.wikipedia.org/wiki/Szymanski's_algorithm
https://en.wikipedia.org/wiki/Lamport's_bakery_algorithm

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 sequential flags
5 flags = [False, False]
6

7 def thread(self):
8 while choose({ False, True }):
9 # Enter critical section

10 flags[self] = True
11 while flags[1 – self]:
12 flags[self] = False
13 flags[self] = True
14

15 atomically in cs += 1
16 # Critical section
17 atomically in cs –= 1
18

19 # Leave critical section
20 flags[self] = False
21

22 spawn thread(0)
23 spawn thread(1)

Figure 6.3: [code/csonebit.hny] Mutual exclusion using a flag per thread

47

https://harmony.cs.cornell.edu/code/csonebit.hny

Chapter 7

Harmony Methods and Pointers

A method m with argument a is invoked in its most basic form as follows (assigning the result to
r).

r = m a

That’s right, no parentheses are required. In fact, if you invoke m(a), the argument is (a), which
is the same as a. If you invoke m(), the argument is (), which is the empty tuple. If you invoke
m(a, b), the argument is (a, b), the tuple consisting of values a and b.

You may note that all this looks familiar. Indeed, the syntax is the same as that for dictionaries
and lists (see Chapter 4). Dictionaries, lists, and methods all map Harmony values to Harmony
values, and their syntax is indistinguishable. If f is a method, list, or dictionary, and x is some
Harmony value, then f x, f(x), and f[x] are all the same expression in Harmony.

Harmony does not have a return statement. Using the returns clause of def, a result variable
can be declared, for example: def f() returns something. The result of the method should be
assigned to variable something. If there is no returns clause, then (for backwards compatibility
reasons) the method has a default result variable called result. The default value of result is None
for compatibility with Python.

Harmony also does not support break or continue statements in loops. One reason for their
absence is that, particularly in concurrent programming, such control flow directions are highly
error-prone. It’s too easy to forget to, say, release a lock when returning a value in the middle of a
method—a major source of bugs in practice.

Harmony is not an object-oriented language like Python is. In Python, you can pass a reference
to an object to a method, and that method can then update the object. In Harmony, it is also
sometimes convenient to have a method update a shared variable specified as an argument. For
this, as mentioned in Chapter 4, each shared variable has an address, itself a Harmony value. If x
is a shared variable, then the expression ?x is the address of x. If a variable contains an address, we
call that variable a pointer. If p is a pointer to a shared variable, then the expression !p is the value
of the shared variable. In particular, !?x = x. This is similar to how C pointers work (*&x = x).

Often, pointers point to dictionaries, and so if p is such a pointer, then (!p).field would evaluate
to the specified field in the dictionary. Note that the parentheses in this expression are needed,

48

1 def P enter(pm, pid):
2 pm→flags[pid] = True
3 pm→turn = 1 – pid
4 await (not pm→flags[1 – pid]) or (pm→turn == pid)
5

6 def P exit(pm, pid):
7 pm→flags[pid] = False
8

9 def P mutex() returns result :
10 result = { .turn: choose({0, 1}), .flags: [False, False] }
11

12 #### The code above can go into its own Harmony module ####
13

14 in cs = 0
15 invariant in cs in { 0, 1 }
16

17 sequential mutex
18 mutex = P mutex()
19

20 def thread(self):
21 while choose({ False, True }):
22 P enter(?mutex, self)
23

24 atomically in cs += 1
25 # Critical section
26 atomically in cs –= 1
27

28 P exit(?mutex, self)
29

30 spawn thread(0)
31 spawn thread(1)

Figure 7.1: [code/PetersonMethod.hny] Peterson’s Algorithm accessed through methods

49

https://harmony.cs.cornell.edu/code/PetersonMethod.hny

1 current = [[1, 2, 3], [], []]
2

3 while current [2] != [1, 2, 3]:
4 let moves = { (s, d) for s in {0..2} for d in {0..2}
5 where current [s] != []
6 where (current [d] == []) or (current [s][0] < current [d][0]) }
7 let (src,dst) = choose moves:
8 print str(src) + " −> " + str(dst)
9 current [dst] = [current [src][0],] + current [dst]

10 del current [src][0]
11

12 assert False

Figure 7.2: [code/hanoi.hny] Towers of Hanoi

as !p.field would wrongly evaluate !(p.field). (!p).field is such a common expression that, like C,
Harmony supports the shorthand p→field, which greatly improves readability.

Figure 7.1 again shows Peterson’s algorithm, but this time with methods defined to enter and
exit the critical section. The name mutex is often used to denote a variable or value that is used for
mutual exclusion. P mutex is a method that returns a “mutex,” which, in this case, is a dictionary
that contains Peterson’s Algorithm’s shared memory state: a turn variable and two flags. Both
methods P enter and P exit take two arguments: a pointer to a mutex and the thread identifier
(0 or 1). pm→turn is the value of the .turn key in the dictionary that pm points to.

You can put the first three methods in its own Harmony source file and include it using the
Harmony import statement. This would make the code usable by multiple applications.

Finally, methods can have local variables. Method variables are either mutable (writable) or
immutable (read-only). The arguments to a method and the bound variable (or variables) within a
for statement are immutable; the result variable is mutable. Using the var statement, new mutable
local variables can be declared. For example, var x = 3 declares a new mutable local variable x.
The let statement allows declaring new immutable local variables. For example: let x = 3: y += x
adds 3 to the global variable y. See Section A.4 for more information.

As an example of using let, Figure 7.2 solves the Towers of Hanoi problem. If you are not famil-
iar with this problem: there are three towers with disks of varying sizes. In the initial configuration,
the first tower has three disks (of sizes 1, 2, and 3), with the largest disk at the bottom, while the
other two towers are empty. You are allowed to move a top disk from one tower to another, but
you are not allowed to stack a larger disk on a smaller one. The objective is to move the disks from
the first tower to the third one. The program tries valid moves at random until it finds a solution.
Curiously, the program then asserts False. This is to cause the model checker to stop and output
the trace. If you look in the output column of the trace, you will find the minimal number of moves
necessary to solve the problem.

It is even cooler to remove that assertion and let Harmony generate all possible solutions to the
problem.

50

https://harmony.cs.cornell.edu/code/hanoi.hny

1 const FIFO = False
2

3 def CLOCK(n) returns result :
4 result = { .entries: [None,] * n, .recent : {}, .hand : 0, .misses: 0 }
5

6 def ref(clock, x):
7 if x not in clock→entries:
8 while clock→entries[clock→hand] in clock→recent :
9 clock→recent –= {clock→entries[clock→hand]}

10 clock→hand = (clock→hand + 1) % len(clock→entries)
11 clock→entries[clock→hand] = x
12 clock→hand = (clock→hand + 1) % len(clock→entries)
13 clock→misses += 1
14 if not FIFO:
15 clock→recent |= {x}
16

17 clock3, clock4, refs = CLOCK(3), CLOCK(4), []
18

19 const VALUES = { 1..5 }
20

21 var last = {}
22 for i in {1..100}:
23 let x = i if i < 5 else choose(VALUES – last):
24 refs = refs + [x,]
25 ref(?clock3, x); ref(?clock4, x)
26 assert(clock4.misses <= clock3.misses)
27 last = {x}

Figure 7.3: [code/clock.hny] Harmony program that finds page replacement anomalies

51

https://harmony.cs.cornell.edu/code/clock.hny

If you are ready to learn about how locks are implemented in practice, you can now skip the
rest of this chapter. But if you would like to see a cool example of using the concepts introduced in
this chapter, hang on for a sequential Harmony program that finds anomalies in page replacement
algorithms. In 1969, Bélády et al. published a paper [BNS69] that showed that making a cache
larger does not necessarily lead to a higher hit ratio. He showed this for a scenario using a FIFO
replacement policy when the cache is full. The program in Figure 7.3 will find exactly the same
scenario if you define FIFO to be True. Moreover, if you define FIFO to be False, it will find a
scenario for the CLOCK replacement policy [Cor69], often used in modern operating systems.

In this program, CLOCK maintains the state of a cache (in practice, typically pages in memory).
The set recent maintains whether an access to the cache for a particular reference was recent or
not. (It is not used if FIFO is True.) The integer misses maintains the number of cache misses.
Method ref(ck, x) is invoked when x is referenced and checked against the cache ck.

The program declares two caches: one with 3 entries (clock3) and one with 4 entries (clock4).
The interesting part is in the last block of code. It runs every sequence of references of up to
100 entries, using references in the range 1 through 5. Note that all the constants chosen in this
program (3, 4, 5, 100) are the result of some experimentation—you can try other ones. To reduce
the search space, the first four references are pinned to 1, 2, 3, and 4. Further reducing the search
space, the program never repeats the same reference twice in a row (using the local variable last).

The two things to note here is the use of the choose expression and the assert statement.
Using choose, we are able to express searching through all possible strings of references without a
complicated nested iteration. Using assert, we are able to express the anomaly we are looking for.

In case you want to check if you get the right results. For FIFO, the program finds the same
anomaly that Bélády et al. found: 1 2 3 4 1 2 5 1 2 3 4 5. For the CLOCK algorithm the program
actually finds a shorter reference string: 1 2 3 4 2 1 2 5 1 2.

Exercises

7.1 (This is just for fun or exercise as it is not a concurrent or distributed problem.) Implement a
Harmony program that finds solutions to the “cabbage, goat, and wolf” problem. In this problem,
a person accompanied by these three items has to cross a stream in a small boat, but can only take
one item at a time. So, the person has to cross back and forth several times, leaving two items on
one or the other shore by themselves. Unfortunately, if left to themselves, the goat would eat the
cabbage and the wolf would eat the goat. What crossings does the person need to make in order
not to lose any items?

52

Chapter 8

Specification

So far, we have used Harmony to implement various algorithms. But Harmony can also be used
to specify what an algorithm is supposed to do. For example, Figure 8.1 specifies the intended
behavior of a lock. In this case, a lock is a boolean, initially False, with two operations, acquire()
and release(). The acquire() operation waits until the lock is False and then sets it to True
in an atomic operation. The release() operation sets the lock back to False. The code is similar
to Figure 5.3, except that waiting for the lock to become available and taking it is executed as an
atomic operation.

The code in Figure 8.1 is similar to the code in Harmony’s synch module. (The module gen-
eralizes locks to binary semaphores (Chapter 16), but the lock interface is the same.) Figure 8.2
shows how locks may be used to implement a critical section. Figure 8.3 gives an example of how
locks may be used to fix the program of Figure 3.3.

Note that the code of Figure 8.1 is executable in Harmony. However, the atomically keyword
is not available in general programming languages and should not be used for implementation.
Peterson’s algorithm is an implementation of a lock, although only for two processes. In the following
chapters, we will look at more general ways of implementing locks using atomic constructions that
are usually available in the underlying hardware.

In Harmony, any statement can be preceded by the atomically keyword. It means that state-
ment as a whole is to be executed atomically. The atomically keyword can be used to specify
the behavior of methods such as acquire and release. But an actual executable program should
not use the atomically keyword because—on a normal machine—it cannot be directly compiled
into machine code. If we want to make the program executable on hardware, we have to show how
Lock, acquire, and release are implemented, not just how they are specified. Chapter 9 presents
such an implementation.

The code in Figure 8.1 also uses the Harmony when statement. A when statement waits until
a time in which condition holds (not necessarily the first time) and then executes the statement
block. The “await condition” statement is the same as “when condition: pass”. Combined with
the atomically keyword, the entire statement is executed atomically at a time that the condition
holds.

It is important to appreciate the difference between an atomic section (the statements executed
within an atomic block of statements) and a critical section (protected by a lock of some sort). The
former ensures that while the statements are executing no other thread can execute. The latter

53

1 def Lock() returns result :
2 result = False
3

4 def acquire(lk):
5 atomically when not !lk :
6 !lk = True
7

8 def release(lk):
9 atomically:

10 assert !lk
11 !lk = False

Figure 8.1: [code/lock.hny] Specification of a lock

1 from lock import Lock, acquire, release
2

3 const NTHREADS = 5
4

5 thelock = Lock()
6

7 def thread():
8 acquire(?thelock)
9 pass # critical section is here

10 release(?thelock)
11

12 for i in {1..NTHREADS}:
13 spawn thread()

Figure 8.2: [code/lock demo.hny] Using a lock to implement a critical section

54

https://harmony.cs.cornell.edu/code/lock.hny
https://harmony.cs.cornell.edu/code/lock_demo.hny

1 from synch import Lock, acquire, release
2

3 sequential done
4

5 count = 0
6 countlock = Lock()
7 done = [False, False]
8

9 def thread(self):
10 acquire(?countlock)
11 count = count + 1
12 release(?countlock)
13 done[self] = True
14 await done[1 – self]
15 assert count == 2
16

17 spawn thread(0)
18 spawn thread(1)

Figure 8.3: [code/UpLock.hny] Figure 3.3 fixed with a lock

allows multiple threads to run concurrently, just not within the critical section. The former is rarely
available to a programmer (e.g., none of Python, C, or Java support it), while the latter is very
common.

Atomic statements are not intended to replace locks or other synchonization primitives. When
implementing synchronization solutions you should not directly use atomic statements but use the
synchronization primitives that are available to you. But if you want to specify a synchronization
primitive, then use atomically by all means. You can also use atomic statements in your test code.
In fact, as mentioned before, assert statements are included to test if certain conditions hold in
every execution and are executed atomically.

55

https://harmony.cs.cornell.edu/code/UpLock.hny

Chapter 9

Spinlock

Peterson’s algorithm implements locks, but it is not efficient, especially if generalized to multiple
threads. Worse, Peterson relies on load and store operations to be executed atomically, but this
may not be the case. There are a variety of possible reasons for this.

� Variables may have more bits than the processor’s data bus. For example, variables may have
32 bits, but the data bus may only have 16 bits. Thus to store or load a variable takes two 16-
bit operations each. Take, for example, a variable that has value 0xFFFFFFFF, and consider
a concurrent load and store operation on the variable. The store operation wants to clear the
variable, but because it takes two store operations on the bus, the load operation may return
either 0xFFFF0000 or 0x0000FFFF, a value that the variable never was supposed to have.
This is the case even if the processor supports a 32-bit load or store machine instruction: on
the data bus it is still two operations.

� Modern processors sometimes re-orders load and store operations (out-of-order execution) for
improved performance. On a sequential processor, the re-ordering is not a problem as the
processor only re-orders operations on independent memory locations. However, as Exer-
cise 6.3 showed, Peterson’s algorithm breaks down if such seemingly independent operations
are re-ordered. Some memory caches can also cause non-atomic behavior of memory when
shared among multiple cores.

� Even compilers, in their code generation, may make optimizations that can reorder operations,
or even eliminate operations, on variables. For example, a compiler may decide that it is
unnecessary to read the same variable more than once, because how could it possibly change
if there are no store operations in between?

Peterson’s algorithm relies on a sequential consistent memory model and hence the sequential
statement: without it Harmony will complain about data races. More precisely, the sequential
statement says that the program relies on memory load and store instructions operating on the
indicated variables to be performed sequentially, and that this order should be consistent with the
order of operations invoked on each thread. The default memory models of C and Java are not
sequentially consistent. The unfortunately named volatile keyword in Java has a similar function
as Harmony’s sequential keyword. Like many constructions in Java, its volatile keyword was

56

1 const N = 3
2

3 in cs = 0
4 invariant in cs in { 0, 1 }
5

6 shared = False
7 private = [True,] * N

8 invariant len(x for x in [shared,] + private where not x) <= 1
9

10 def test and set(s, p):
11 atomically:
12 !p = !s
13 !s = True
14

15 def clear(s):
16 assert !s
17 atomically !s = False
18

19 def thread(self):
20 while choose({ False, True }):
21 # Enter critical section
22 while private[self]:
23 test and set(?shared, ?private[self])
24

25 atomically in cs += 1
26 assert not private[self]
27 atomically in cs –= 1
28

29 # Leave critical section
30 private[self] = True
31 clear(?shared)
32

33 for i in {0..N–1}:
34 spawn thread(i)

Figure 9.1: [code/spinlock.hny] Mutual Exclusion using a “spinlock” based on test-and-set

57

https://harmony.cs.cornell.edu/code/spinlock.hny

borrowed from C and C++. However, in C and C++, they do not provide sequential consistency,
and one cannot implement Peterson’s algorithm in C or C++ directly.

For proper synchronization, multi-core processors provide so-called atomic instructions: special
machine instructions that can read memory and then write it in an indivisible step. While the HVM
does not have any specific built-in atomic instructions besides loading and storing variables, it does
have support for executing multiple instructions atomically. Any Harmony statement can be made
atomic using the atomically keyword. We can use atomic statements to implement a wide variety
of atomic operations. For example, we could fix the program in Figure 3.3 by constructing an
atomic increment operation for a counter, like so:

1 def atomic inc(ptr):
2 atomically !ptr += 1
3

4 count = 0
5 atomic inc(?count)

To support implementing locks, many CPUs have an atomic “test-and-set” (TAS) operation.
Method test and set in Figure 9.1 shows its specification. Here s points to a shared boolean
variable and p to a private boolean variable, belonging to some thread. The operation copies the
value of the shared variable to the private variable (the “test”) and then sets the shared variable
to True (“set”).

Figure 9.1 goes on to implement mutual exclusion for a set of N threads. The approach is called
spinlock, because each thread is “spinning” (executing a tight loop) until it can acquire the lock.
The program uses N + 1 boolean variables. Variable shared is initialized to False while private[i]
for each thread i is initialized to True.

An important invariant, I1, of the program is that at any time at most one of these variables is
False. Another invariant, I2(i), is that if thread i is in the critical section, then private[i] = False.
Between the two (i.e., I1 ∧ ∀i : I2(i)), it is clear that only one thread can be in the critical section
at the same time.

To see that invariant I1 is maintained, note that !p =True upon entry of test and set (because
of the condition on the while loop that the test and set method is invoked in). There are two
cases:

1. !s is False upon entry to test and set. Then upon exit !p = False and !s = True, main-
taining the invariant.

2. !s is True upon entry to test and set. Then upon exit nothing has changed, maintaining
the invariant.

Invariant I1 is also easy to verify for exiting the critical section because we can assume, by the
induction hypothesis, that private[i] is True just before exiting the critical section. Invariant I2(i)
is obvious as (i) thread i only proceeds to the critical section if private(i] is False, and (ii) no other
thread modifies private(i].

Harmony can check these invariants. I1(i) is specified in Line 8, while I2(i) is checked by the
assert statement in the critical section. The expression in Line 8 counts the number of False
values and checks that the result is less than or equal to 1.

58

Exercises

9.1 Implement an atomic swap operation. It should take two pointer arguments and swap the
values.

9.2 Implement a spinlock using the atomic swap operation.

9.3 For the solution to Exercise 9.2, write out the invariants that need to hold and check them
using Harmony.

59

Chapter 10

Lock Implementations

Locks are probably the most prevalent and basic form of synchronization in concurrent programs.
Typically, whenever you have a shared data structure, you want to protect the data structure
with a lock and acquire the lock before access and release it immediately afterward. In other
words, you want the access to the data structure to be a critical section. That way, when a thread
makes modifications to the data structure that take multiple steps, other threads will not see the
intermediate inconsistent states of the data structure.

When there is a bug in a program because some code omitted obtaining a lock before accessing
a shared data structure, that is known as a data race. More precisely, a data race happens when
there is a state in which multiple threads are trying to access the same variable, and at least one
of those accesses updates the variable. In many environments, including C and Java programs, the
behavior of concurrent load and store operations have tricky or even undefined semantics. One
should therefore avoid data races, which is why Harmony reports them even though Harmony has
sequentially consistent memory.

Harmony does not report data races in two cases. First, using the sequential statement, you
can specify that concurrent access to the specified variables is intended. Second, if the accesses are
within an atomic statement block, then they are not considered part of a data race.

Figure 9.1 shows a lock implementation based on a shared variable and a private variable for
each thread. The private variables themselves are actually implemented as shared variables, but
they are accessed only by their respective threads. A thread usually does not keep explicit track
of whether it has a lock or not, because it is implied by the control flow of the program—a thread
implicitly knows that when it is executing in a critical section it has the lock. There is no need
to keep private as a shared variable—we only did so to be able to show and check the invariants.
Figure 10.1 shows a more straightforward implementation of a spinlock. The lock is also cleared in
an atomic statement to prevent a data race. This approach is general for any number of threads.

You can test the spinlock with the program in Figure 10.3 using the command harmony -m

synch=lock tas code/lock test1.hny. The -m flag tells Harmony to use the taslock.hny file
for the synch module rather than the standard synch module (which contains only a specification
of the lock methods). The test program has a collection of threads repeatedly enter a critical section
and testing that there is at most one thread in the critical section at any time.

The spinlock implementation suffers potentially from starvation: an unlucky thread may never
be able to get the lock while other threads successfully acquire the lock one after another. It could

60

1 def test and set(s) returns result :
2 atomically:
3 result = !s
4 !s = True
5

6 def atomic store(p, v):
7 atomically !p = v
8

9 def Lock() returns result :
10 result = False
11

12 def acquire(lk):
13 while test and set(lk):
14 pass
15

16 def release(lk):
17 atomic store(lk, False)

Figure 10.1: [code/lock tas.hny] Implementation of the lock specification in Figure 8.1 using a
spinlock based on test-and-set

even happen with just two threads: one thread might successfully acquire the lock repeatedly in a
loop, while another thread is never lucky enough to acquire the lock in between.

A ticket lock (Figure 10.2 is an implementation of a lock that prevents starvation using an atomic
fetch-and-increment operator. It is inspired by European bakeries. A European bakery often has a
clearly displayed counter (usually just two digits) and a ticket dispenser. Tickets are numbered 0
through 99 and repeat over and over again (in the case of a two digit counter). When a customer
walks into the bakery, they draw a number from the dispenser and wait until their number comes
up. Every time a customer has been helped, the counter is incremented. (Note that this only works
if there can be no more than 100 customers in the bakery at a time.)

Figure 10.2 similarly uses two variables for a lock, counter and dispenser. When a thread
acquires the lock, it fetches the current dispenser value and increments it modulo MAX THREADS, all
in one atomic operation. In practice, MAX THREADS would be a number like 232 or 264, but since
the Harmony model checker checks every possible state, limiting MAX THREADS to a small number
significantly reduces the time to model check a Harmony program. Plus it is easier to check that
it fails when you run it with more than MAX THREADS threads. Note that loading the counter must
also be done atomically in order to avoid a data race. You can test the implementation using the
command harmony -m synch=lock ticket code/lock test1.hny. To see it fail, try harmony -c

NTHREADS=10 -m synch=lock ticket code/lock test1.hny.

We now turn to a radically different way of implementing locks, one that is commonly provided
by operating systems to user processes. We call a thread blocked if a thread cannot change the
state or terminate unless another thread changes the state first. A thread trying to acquire a lock

61

https://harmony.cs.cornell.edu/code/lock_tas.hny

1 const MAX THREADS = 8
2

3 def fetch and increment(p) returns result :
4 atomically:
5 result = !p
6 !p = (!p + 1) % MAX THREADS

7

8 def atomic load(p) returns result :
9 atomically result = !p

10

11 def Lock():
12 result = { .counter : 0, .dispenser : 0 }
13

14 def acquire(lk):
15 let my ticket = fetch and increment(?lk→dispenser):
16 while atomic load(?lk→counter) != my ticket :
17 pass
18

19 def release(lk):
20 fetch and increment(?lk→counter)

Figure 10.2: [code/lock ticket.hny] Implementation of the lock specification in Figure 8.1 using a
ticket lock

62

https://harmony.cs.cornell.edu/code/lock_ticket.hny

1 import lock
2

3 const NTHREADS = 5
4

5 in cs = 0
6 invariant in cs in { 0, 1 }
7

8 thelock = lock.Lock()
9

10 def thread():
11 while choose({ False, True }):
12 lock.acquire(?thelock)
13

14 atomically in cs += 1
15 # Critical section
16 atomically in cs –= 1
17

18 lock.release(?thelock)
19

20 for i in {1..NTHREADS}:
21 spawn thread()

Figure 10.3: [code/lock test1.hny] A test program for locks (based on Figure 5.2)

63

https://harmony.cs.cornell.edu/code/lock_test1.hny

1 import list
2

3 def Lock() returns result :
4 result = { .acquired : False, .suspended : [] }
5

6 def acquire(lk):
7 atomically:
8 if lk→acquired :
9 stop ?lk→suspended [len lk→suspended]

10 assert lk→acquired
11 else:
12 lk→acquired = True
13

14 def release(lk):
15 atomically:
16 assert lk→acquired
17 if lk→suspended == []:
18 lk→acquired = False
19 else:
20 go (list.head(lk→suspended)) ()
21 lk→suspended = list.tail(lk→suspended)

Figure 10.4: [modules/lock susp.hny] Lock implementation using suspension

held by another thread is a good example of a thread being blocked. The only way forward is if
the other thread releases the lock. A thread that is in an infinite loop is also considered blocked.

In most operating systems, threads are virtual (as opposed to “raw CPU cores”) and can be
suspended until some condition changes. For example, a thread that is trying to acquire a lock
can be suspended until the lock is available. In Harmony, a thread can suspend itself and save
its context (state) in a shared variable. Recall that the context of a thread contains its program
counter, stack, and register (containing the current method’s variables). A context is a regular (if
complex) Harmony value. The syntax of the expression that a thread executes to suspend itself is
as follows:

stop s

This causes the context of the thread to be saved in !s and the thread to be no longer running.
Another thread can revive the thread using the go statement:

go s r

64

https://harmony.cs.cornell.edu/modules/lock_susp.hny

Here s contains the context and r is a Harmony value. It causes a thread with the context
contained in s to be added to the state that has just executed the stop s expression. The stop
expression returns the value r.

Figure 10.4 shows the lock interface using suspension. It is implemented as follows:

� A lock maintains both a boolean indicating whether the lock is currently acquired and a list
of contexts of threads that want to acquire the lock.

� acquire() acquires the lock if available and suspends the invoking thread if not. In the latter
case, the context of the thread is added to the end of the list of contexts. Note that stop
is called within an atomic statement block—this is the only exception to such an atomic
statement block running to completion. While the thread is running no other threads can
run, but when the thread suspends itself other threads can run.

� release() checks to see if any threads are waiting to acquire the lock. If so, it uses the head
and tail methods from the list module (see Section B.6) to resume the first thread that
got suspended and to remove its context from the list.

Selecting the first thread is a design choice. Another implementation could have picked the last
one, and yet another implementation could have used choose to pick an arbitrary one. Selecting
the first is a common choice in lock implementations as it prevents starvation.

You will find that using the implementation of a lock instead of the specification of a lock (in
the synch module) often leads to the model checker searching a significantly larger state space.
Thus it makes sense to model check larger programs in a modular fashion: model check one module
implementation at a time, using specifications for the other modules.

Exercises

10.1 Run Figure 8.3 using (i) synch and (ii) synchS. Report how many states were explored by
Harmony for each module.

10.2 Figure 10.5 shows a Harmony program with two variables x (initially 0) and y (initially 100)
that can be accessed through methods setX and getXY. An application invariant is that getXY

should return a pair that sums to 100. Add the necessary synchronization code.

10.3 Implement tryAcquire(b) as an additional interface for both the synch and synchS modules.
This interface is like acquire(b) but never blocks. It returns True if the lock was available (and
now acquired) or False if the lock was already acquired. Hint: you do not have to change the
existing code.

10.4 People who use an ATM often first check their balance and then withdraw a certain amount
of money not exceeding their balance. A negative balance is not allowed. Figure 10.6 shows two
operations on bank accounts: one to check the balance and one to withdraw money. Note that
all operations on accounts are carefully protected by a lock (i.e., there are no data races). The
customer method models going to a particular ATM and withdrawing money not exceeding the
balance. Running the code through Harmony reveals that there is a bug. It is a common type
of concurrency bug known as Time Of Check Time Of Execution (TOCTOE). In this case, by
the time the withdraw operation is performed, the balance can have changed. Fix the code in

65

1 x, y = 0, 100
2

3 def setX(a):
4 x = a

5 y = 100 – a

6

7 def getXY() returns xy :
8 xy = [x, y]
9

10 def checker():
11 let xy = getXY():
12 assert (xy [0] + xy [1]) == 100, xy
13

14 spawn checker()
15 spawn setX(50)

Figure 10.5: [code/xy.hny] Incomplete code for Exercise 10.2 with desired invariant x+ y = 100

Figure 10.6. Note, you should leave the customer code the same. You are only allowed to change
the atm methods, and you cannot use the atomically keyword.

66

https://harmony.cs.cornell.edu/code/xy.hny

1 from synch import Lock, acquire, release
2

3 const N ACCOUNTS = 2
4 const N CUSTOMERS = 2
5 const N ATMS = 2
6 const MAX BALANCE = 1
7

8 accounts = [{ .lock : Lock(), .balance: choose({0..MAX BALANCE})}
9 for i in {1..N ACCOUNTS}]

10

11 invariant min(accounts[acct].balance for acct in {0..N ACCOUNTS–1}) >= 0
12

13 def atm check balance(acct) returns balance: # return the balance on acct
14 acquire(?accounts[acct].lock)
15 balance = accounts[acct].balance
16 release(?accounts[acct].lock)
17

18 def atm withdraw(acct, amount) returns success: # withdraw amount from acct
19 assert amount >= 0
20 acquire(?accounts[acct].lock)
21 accounts[acct].balance –= amount
22 release(?accounts[acct].lock)
23 success = True
24

25 def customer(atm, acct, amount):
26 assert amount >= 0
27 let bal = atm check balance(acct):
28 if amount <= bal :
29 atm withdraw(acct, amount)
30

31 for i in {1..N ATMS}:
32 spawn customer(i, choose({0..N ACCOUNTS–1}),
33 choose({0..MAX BALANCE}))

Figure 10.6: [code/atm.hny] Withdrawing money from an ATM

67

https://harmony.cs.cornell.edu/code/atm.hny

Chapter 11

Concurrent Data Structures

The most common use for locks is in building concurrent data structures. By way of example, we
will first demonstrate how to build a concurrent queue. The queue module can be used as follows:

� x = Queue(): initialize a new queue x ;

� put(?x, v): add v to the tail of x ;

� r = get(?x): returns r = None if x is empty or r = v if v was at the head of x.

Figure 11.1(a) shows a sequential specification for such a queue in Harmony. It is a credible
queue implementation, but it cannot be used with threads concurrently accessing this queue. Fig-
ure 11.1(b) shows the corresponding concurrent specification. It cannot be used as an implemen-
tation for a queue, as processors generally do not have atomic operations on lists, but it will work
well as a specification. See Figure 11.2 for a simple demonstration program that uses a concurrent
queue.

We will first implement the queue as a linked list. The implementation in Figure 11.3 uses the
alloc module for dynamic allocation of nodes in the list using malloc() and free(). malloc(v)
returns a new memory location initialized to v, which should be released with free() when it is
no longer in use. The queue maintains a head pointer to the first element in the list and a tail

pointer to the last element in the list. The head pointer is None if and only if the queue is empty.
(None is a special address value that is not the address of any memory location.)

Queue() returns the initial value for a queue object consisting of a None head and tail pointer
and a lock. The put(q, v) and get(q) methods both take a pointer q to the queue object because
both may modify the queue. Before they access the value of the head or tail of the queue they first
obtain the lock. When they are done, they release the lock.

An important thing to note in Figure 11.2 is Lines 7 and 8. It would be incorrect to replace
these by:

assert queue.get(q) in { None, 1, 2 }

The reason is that queue.get() changes the state by acquiring a lock, but the expressions in
assert statements (or invariant and finally statements) are not allowed to change the state.

68

1 def Queue() returns empty:
2 empty = []
3

4 def put(q, v):
5 !q += [v,]
6

7 def get(q) returns next :
8 if !q == []:
9 next = None

10 else:
11 next = (!q)[0]
12 del (!q)[0]

1 def Queue() returns empty:
2 empty = []
3

4 def put(q, v):
5 atomically !q += [v,]
6

7 def get(q) returns next :
8 atomically:
9 if !q == []:

10 next = None
11 else:
12 next = (!q)[0]
13 del (!q)[0]

(a) [code/queue nonatom.hny] Sequential (b) [code/queue.hny] Concurrent

Figure 11.1: A sequential and a concurrent specification of a queue

1 import queue
2

3 def sender(q, v):
4 queue.put(q, v)
5

6 def receiver(q):
7 let v = queue.get(q):
8 assert v in { None, 1, 2 }
9

10 demoq = queue.Queue()
11 spawn sender(?demoq, 1)
12 spawn sender(?demoq, 2)
13 spawn receiver(?demoq)
14 spawn receiver(?demoq)

Figure 11.2: [code/queue test1.hny] Using a concurrent queue

69

https://harmony.cs.cornell.edu/code/queue_nonatom.hny
https://harmony.cs.cornell.edu/code/queue.hny
https://harmony.cs.cornell.edu/code/queue_test1.hny

Figure 11.4 shows another concurrent queue implementation [MS96]. It is well-known, but what
is not often realized is that it requires sequentially consistent memory, which is not said explicitly in
the paper. As a result, the algorithm must be coded very carefully to work correctly with modern
programming languages and computer hardware. The implementation uses separate locks for the
head and the tail, allowing a put and a get operation to proceed concurrently. To avoid contention
between the head and the tail, the queue uses a dummy node at the head of the linked list. Except
initially, the dummy node is the last node that was dequeued. Note that neither the head nor
tail pointer are ever None. The problem is when the queue is empty and there are concurrent
get and put operations. They obtain separate locks and then concurrently access the next field in
the dummy node—a data race with undefined semantics in most environments. To get around this
problem, the implementation in Figure 11.4 uses atomic load and atomic store from the synch

module.

Exercises

11.1 Add a method contains(q, v) to Figure 11.1(b) that checks to see if v is in queue q.

11.2 Add a method length(q) to Figure 11.3 that returns the length of the given queue. The
complexity of the method should be O(1), which is to say that you should maintain the length of
the queue as a field member and update it in put and get.

11.3 Write a method check(q) that checks the integrity of the queue in Figure 11.3. In particular,
it should check the following integrity properties:

� If the list is empty, q→tail should be None. Otherwise, the last element in the linked list
starting from q→head should equal q→head. Moreover, q→tail→next should be None;

� The length field that you added in Exercise 11.3 should equal the length of the list.

Method check(q) should not obtain a lock; instead add the following line just before releasing the
lock in put and get:

assert check()

11.4 Add a method remove(q, v) to Figure 11.3 that removes all occurrences of v, if any, from
queue q.

11.5 The test program in Figure 11.2 is not a thorough test program. Design and implement a test
program for Figure 11.2. Make sure you test the test program by trying it out against some buggy
queue implementations. (You will learn more about testing concurrent programs in Chapter 13.)

70

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .head : None, .tail : None, .lock : Lock() }
6

7 def put(q, v):
8 let node = malloc({ .value: v, .next : None }):
9 acquire(?q→lock)

10 if q→tail == None:
11 q→tail = q→head = node
12 else:
13 q→tail→next = node
14 q→tail = node
15 release(?q→lock)
16

17 def get(q) returns next :
18 acquire(?q→lock)
19 let node = q→head :
20 if node == None:
21 next = None
22 else:
23 next = node→value
24 q→head = node→next
25 if q→head == None:
26 q→tail = None
27 free(node)
28 release(?q→lock)

Figure 11.3: [code/queue lock.hny] An implementation of a concurrent queue data structure and a
depiction of a queue with three elements

71

https://harmony.cs.cornell.edu/code/queue_lock.hny

1 from synch import Lock, acquire, release, atomic load, atomic store

2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 let dummy = malloc({ .value: (), .next : None }):
6 empty = { .head : dummy, .tail : dummy, .hdlock : Lock(), .tllock : Lock() }
7

8 def put(q, v):
9 let node = malloc({ .value: v, .next : None }):

10 acquire(?q→tllock)
11 atomic store(?q→tail→next, node)
12 q→tail = node
13 release(?q→tllock)
14

15 def get(q) returns next :
16 acquire(?q→hdlock)
17 let dummy = q→head
18 let node = atomic load(?dummy→next):
19 if node == None:
20 next = None
21 release(?q→hdlock)
22 else:
23 next = node→value
24 q→head = node
25 release(?q→hdlock)
26 free(dummy)

Figure 11.4: [code/queue MS.hny] A queue with separate locks for enqueuing and dequeuing items
and a depiction of a queue with two elements

72

https://harmony.cs.cornell.edu/code/queue_MS.hny

Chapter 12

Fine-Grained Locking

A queue has the nice property that usually only the head or the tail is accessed. However, in many
data structures it is necessary to “walk” the data structure, an operation that can take significant
time. In such a case, a single lock (known as a “big lock”) for the entire data structure might
restrict concurrency to an unacceptable level. To reduce the granularity of locking, each node in
the data structure must be endowed with its own lock instead.

Figure 12.1 gives the specification of a concurrent set object. SetObject() returns a pointer
to a variable that contains an empty set, rather than returning an empty set value. As such, it is
more like an object in an object-oriented language than like a value in its own right. Values can
be added to the set object using insert() or deleted using remove(). Method contains() checks
if a particular value is in the list. Figure 12.2 contains a simple (although not very thorough) test
program to demonstrate the use of set objects.

Figure 12.3 implements a concurrent set object using an ordered linked list without duplicates.
The list has two dummy “book-end” nodes with values (–1, None) and (1, None). A value v is
stored as (0, v)—note that for any value v, (–1, None) < (0, v) < (1, None). An invariant of
the algorithm is that at any point in time the list is “valid,” starting with a (–1, None) node and
ending with an (1, None) node.

Each node has a lock, a value, and next, a pointer to the next node (which is None for the
(1, None) node to mark the end of the list). The find(lst, v) helper method first finds and locks
two consecutive nodes before and after such that before→data.value < (0, v) <= after→data.value.
It does so by performing something called hand-over-hand locking. It first locks the first node,
which is the (–1, None) node. Then, iteratively, it obtains a lock on the next node and release
the lock on the last one, and so on, similar to climbing a rope hand-over-hand. Using find, the
insert, remove, and contains methods are fairly straightforward to implement.

Exercises

12.1 Add methods to the data structure in Figure 12.3 that report the size of the list, the minimum
value in the list, the maximum value in the list, and the sum of the values in the list. (All these
should ignore the two end nodes.)

73

1 from alloc import malloc
2

3 def SetObject() returns object :
4 object = malloc({})
5

6 def insert(s, v):
7 atomically !s |= {v}
8

9 def remove(s, v):
10 atomically !s –= {v}
11

12 def contains(s, v) returns present :
13 atomically present = v in !s

Figure 12.1: [code/setobj.hny] Specification of a concurrent set object

1 from setobj import *
2

3 myset = SetObject()
4

5 def thread1():
6 insert(myset, 1)
7 let x = contains(myset, 1):
8 assert x
9

10 def thread2(v):
11 insert(myset, v)
12 remove(myset, v)
13

14 spawn thread1()
15 spawn thread2(0)
16 spawn thread2(2)

Figure 12.2: [code/setobj test1.hny] Test code for set objects

74

https://harmony.cs.cornell.edu/code/setobj.hny
https://harmony.cs.cornell.edu/code/setobj_test1.hny

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def node(v, n) returns node: # allocate and initialize a new list node
5 node = malloc({ .lock : Lock(), .value: v, .next : n })
6

7 def find(lst, v) returns pair :
8 var before = lst
9 acquire(?before→lock)

10 var after = before→next
11 acquire(?after→lock)
12 while after→value < (0, v):
13 release(?before→lock)
14 before = after
15 after = before→next
16 acquire(?after→lock)
17 pair = (before, after)
18

19 def SetObject() returns object :
20 object = node((–1, None), node((1, None), None))
21

22 def insert(lst, v):
23 let before, after = find(lst, v):
24 if after→value != (0, v):
25 before→next = node((0, v), after)
26 release(?after→lock)
27 release(?before→lock)
28

29 def remove(lst, v):
30 let before, after = find(lst, v):
31 if after→value == (0, v):
32 before→next = after→next
33 free(after)
34 release(?before→lock)
35

36 def contains(lst, v) returns present :
37 let before, after = find(lst, v):
38 present = after→value == (0, v)
39 release(?after→lock)
40 release(?before→lock)

Figure 12.3: [code/setobj linkedlist.hny] Implementation of a set of values using a linked list with
fine-grained locking

75

https://harmony.cs.cornell.edu/code/setobj_linkedlist.hny

12.2 Create a thread-safe sorted binary tree. Implement a module bintree with methods
BinTree() to create a new binary tree, insert(t, v) that inserts v into tree t, and contains(t, v)
that checks if v is in tree t. Use a single lock per binary tree.

12.3 Create a binary tree that uses, instead of a single lock per tree, a lock for each node in the
tree.

76

Chapter 13

Testing: Checking Behaviors

Testing is a way to increase confidence in the correctness of an implementation. Figure 11.2
demonstrates how concurrent queues may be used, but it is not a very thorough test program for
an implementation such as the one in Figure 11.3 and does little to increase our confidence in its
correctness. To wit, if get() always returned 1, the program would find no problems. Similarly,
Figure 12.2 is not a good test program for something as complicated as Figure 12.3. In this chapter,
we will look at approaches to testing concurrent code.

As with critical sections—when testing a concurrent data structure—we need a specification.
For example, Figure 11.1(a) shows a sequential specification of a queue in Harmony. First, we
can check if the queue implementation in Figure 11.3 meets the sequential queue specification in
Figure 11.1(a). To check if the queue implementation meets the specification, we need to see if
any sequence of queue operations in the implementation matches a corresponding sequence in the
specification. We say that the implementation and the specification have the same behaviors or are
behaviorally equivalent.

Behaviors say something about how we got to a state. The same state can be reached by multiple
behaviors, and the behaviors are often an integral part of whether a program is correct or not. Just
because a state satisfies some invariant—however important—does not mean that the state is valid
given the sequence of operations. For example, a state in which the queue is empty is certainly
a valid state in its own right, but if the last operation to get there was an enqueue operation,
there must be a bug in the program. It can therefore be important to capture the behaviors. We
could store behaviors in the state itself by adding what is known as a history variable that keeps
track of all the operations. While this can be useful for correctness proofs, for model checking this
approach presents a problem: introducing this additional state can lead to state explosion or even
turn a finite model (a model with a finite number of states) into an infinite one. We therefore use
a different approach: composing an implementation with its specification to ensure they accept the
same behaviors.

Figure 13.1 presents a test program that does exactly this, for sequences of up to NOPS queue
operations. It maintains two queues:

� specq : the queue of the specification;

� implq : the queue of the implementation.

77

1 import queue, queueconc
2

3 const NOPS = 4
4 const VALUES = { 1..NOPS }
5

6 specq = queue.Queue()
7 implq = queueconc.Queue()
8

9 for i in {1..NOPS}:
10 let op = choose({ "get", "put" }):
11 if op == "put":
12 let v = choose(VALUES):
13 queueconc.put(?implq, v)
14 queue.put(?specq, v)
15 else:
16 let v = queueconc.get(?implq)
17 let w = queue.get(?specq):
18 assert v == w

Figure 13.1: [code/queue test seq.hny] Sequential queue test

For each operation, the code first chooses whether to perform a get or put operation. In the case
of a put operation, the code also chooses which value to append to the queue. All operations
are performed on both the queue implementation and the queue specification. In the case of get,
the results of the operation on both the implementation and specification are checked against one
another.

Test programs themselves should be tested. Just because a test program works with a particular
implementation does not mean the implementation is correct—it may be that the implementation
is incorrect but the test program does not have enough coverage to find any bugs in the implemen-
tation. So, run a test program like this with a variety of queue implementations that have known
bugs in them and make sure that the test program finds them. Conversely, a test program may be
broken in that it finds bugs that do not exist. In my experience, it is often harder to implement
the test program than the algorithm that the test program tests.

As with any other test program, Figure 13.1 may not trigger extant bugs, but it nonetheless
inspires reasonable confidence that the queue implementation is correct, at least sequentially. The
higher NOPS, the higher the confidence. It is possible to write similar programs in other languages
such as Python, but the choose expression in Harmony makes it relatively easy to explore all corner
cases. For example, a common programming mistake is to forget to update the tail pointer in
get() in case the queue becomes empty. Normally, it is a surprisingly tricky bug to find. You can
comment out those lines in Figure 11.3 and run the test program—it should easily find the bug and
explain exactly how the bug manifests itself, adding confidence that the test program is reasonably
thorough.

78

https://harmony.cs.cornell.edu/code/queue_test_seq.hny

1 import queue
2

3 const NOPS = 4
4 q = queue.Queue()
5

6 def put test(self):
7 print("call put", self)
8 queue.put(?q, self)
9 print("done put", self)

10

11 def get test(self):
12 print("call get", self)
13 let v = queue.get(?q):
14 print("done get", self, v)
15

16 nputs = choose {1..NOPS–1}
17 for i in {1..nputs}:
18 spawn put test(i)
19 for i in {1..NOPS–nputs}:
20 spawn get test(i)

Figure 13.2: [code/queue btest1.hny] Concurrent queue test. The behavior DFA is for NOPS = 2.

The test program also finds some common mistakes in using locks, such as forgetting to release
a lock when the queue is empty, but it is not designed to find concurrency bugs in general. If you
remove all acquire() and release() calls from Figure 11.3, the test program will not (and should
not) find any errors, but it would be an incorrect implementation of a concurrent queue.

The next step is to test if the queue implementation meets the concurrent queue specification
or not. Figure 11.1(b) shows the concurrent queue specification. It is similar to the sequential
specification in Figure 11.1(a) but makes all operations (except instantiation itself) atomic. Testing
the implementation of a concurrent queue specification is trickier than testing the implementation
of a sequential one because there are many more scenarios to check.

We would like a way that—similar to the sequential test—systematically compares behaviors of
the concurrent queue implementation with behaviors of the concurrent queue specification. But we
cannot do this by composing the specification and the implementation and simply run the same test

79

https://harmony.cs.cornell.edu/code/queue_btest1.hny

1 import queue, threading, random

2

3 NOPS = 4

4 q = queue.Queue()

5

6 def put_test(self):

7 print("call put", self)

8 q.put(self)

9 print("done put", self)

10

11 def get_test(self):

12 print("call get", self)

13 try:

14 v = q.get(block=False)

15 print("done get", self, v)

16 except queue.Empty:

17 print("done get empty", self)

18

19 nputs = random.randint(1, NOPS - 1)

20 for i in range(nputs):

21 threading.Thread(target=put_test, args=(i,)).start()

22 for i in range(NOPS - nputs):

23 threading.Thread(target=get_test, args=(i,)).start()

Figure 13.3: [python/queue btest1.py] Python implementation of Figure 13.2

80

https://harmony.cs.cornell.edu/python/queue_btest1.py

1 def Queue() returns empty:
2 empty = { .data: [], .head : 0, .tail : 0 }
3

4 def put(q, v):
5 let i = q→tail :
6 q→data[i] = v
7 q→tail = i + 1
8

9 def get(q) returns next :
10 let i = q→head :
11 if i == q→tail :
12 next = None
13 else:
14 next = q→data[i]
15 q→head = i + 1

Figure 13.4: [code/queue nonatom seq.hny] Sequential but not a concurrent queue implementation

operations on both as we did before—concurrency make the operations non-determistic and thus
the specification and implementation of a single execution might produce different results, even if
both are correct. Instead, we will create a test program that tries various concurrent combinations
of queue operations, and run it twice: once against the specification of the concurrent queue and
once against the implementation. We will then check if the behaviors obtained from running the
implementation are also behaviors obtained from the specification.

We will start with a test program that tries concurrent combinations of various queue oper-
ations. Figure 13.2 shows the test program. It starts NOPS threads doing either a put or a get

operation. It selects the fraction of put over get operations nondetermistically, although avoiding
the uninteresting case in which there are none of one of them. In case of a put operation, the thread
enqueues its own name (which is provided as an argument to the thread). In order to capture the
behaviors, each thread prints what operation it is about to perform, and afterwards it prints that
the operation has completed (including the return value if any).

This is probably much like you would do if you were trying to find a bug in a program. Figure 13.3
shows a Python implementation of the same test program. You can run it a bunch of times and
manually check the output. There are, however, two problems with this approach. First, it is often
difficult to check if the behaviors you find are correct ones, and it is easy to overlook problems in
the output. Second, the test program many not check all possible behaviors.

Using Harmony, these problems can be avoided. Figure 13.2 also shows the deterministic finite
automaton that describes the possible outputs when the test program is run against the specification
in the case NOPS = 2—for NOPS = 4 it would be much too large to print here. Since there are no cycles
in the DFA, you can follow some paths through this DFA and see that they are valid interleavings
of the threads. You can obtain this output yourself by running

81

https://harmony.cs.cornell.edu/code/queue_nonatom_seq.hny

$ harmony -c NOPS=2 -o spec.png code/queue btest1.hny

If you run the same test program against the implementation of Figure 11.3, you will get the
same output:

$ harmony -c NOPS=2 -o impl.png -m queue=queue lock code/queue btest1.hny

You can try this for various NOPS, although it gets increasingly harder to check by hand that
the generated DFAs are the same as NOPS increases. Now run the test program against Figure 13.4,
which is clearly an incorrect implementation of the concurrent queue specification because it con-
tains no synchronization code. However, Harmony does not immediately detect any problems. In
fact, for NOPS = 2 it even generates the same set of behaviors. This is because the test program
only outputs the behaviors—it does not check if they are correct.

Harmony does have a way to check the behaviors of one program against the behaviors of
another. In particular, we want to check if the behaviors of the implementations we have match
behaviors of the specification. The following shows, for example, how to check the queueconc.hny
implementation on the command line:

$ harmony -o queue4.hfa code/queue_btest1.hny

$ harmony -B queue4.hfa -m queue=queue_lock code/queue_btest1.hny

The first command runs the code/qtestpar.hny program (with the default 4 threads) and
writes a representation of the output DFA in the file queue4.hfa. The second command runs the
same test program, but using the queue implementation in the file code/queueconc.hny. Moreover,
it reads the DFA in queue4.hfa to check if every behavior of the second run of the test program is
also a behavior of the first run. You can try the same using the code/queueseq.hny implementation
and find that this implementation has behaviors that are not allowed by the specification.

Exercises

13.1 Figure 8.1 shows a specification of a lock. Write a program that checks the behaviors of lock
implementations such as Figure 10.1 and Figure 10.2. That is, it should not rely on assertions such
as in Figure 5.2.

13.2 Write a Harmony program that checks if Figure 12.3 satisfies the specification of Figure 12.1
sequentially.

13.3 Write a Harmony program that checks if Figure 12.3 satisfies the specification of Figure 12.1
concurrently.

13.4 Rewrite Figure 13.1 so it only imports queue and runs NOPS nondeterministically chosen
operations against it (similar in style to Figure 13.2 but without threads). Then use behaviors to
check that Figure 11.3 and Figure 13.4 are correct sequential implementations of the queue. Check
your test program by also trying it on one or two buggy queue implementations.

82

Chapter 14

Debugging

So, you wrote a Harmony program and Harmony reports a problem. Often you may just be able to
figure it out by staring at the code and going through some easy scenarios, but what if you don’t?
The output of Harmony can be helpful in that case.

Figure 14.1 contains an attempt at a queue implementation where the queue is implemented by
a linked list, with the first node being a dummy node to prevent data races. Each node in the list
contains a lock. The put() method walks the list until it gets to the last node, each time acquiring
the lock to access the node’s fields. When put() gets to the last node in the list, it appends a new
one. The get() method locks the first (dummy) node, removes the second from the list and frees
it. The method returns the value from the removed node.

Let us run the code through the test programs in the last chapter. Harmony does not detect
any issues with the sequential test in Figure 13.1. (Run this using the -m flag like this: harmony -m

queue=queue broken code/qtestseq.hny) However, when we run the new queue code through
the test in Figure 13.2, Harmony reports a safety violation (even without specifying a behavior).
Figure 14.2 shows the command line to reproduce this and the first few lines of markdown output.

Before we go look at the details of what went wrong, we want to make sure that we generate
the simplest scenario. So, first we want to explore what the smallest NOPS (number of operations
or number of threads) that causes the bug to occur. With some experimentation, we find that
NOPS = 2 does not find a problem, but NOPS = 3 does (harmony -m queue=queue broken -c

NOPS=3 code/queue btest1.hny)). Figure 14.3 shows the HTML output.
There is quite a bit of information in the HTML output, and while it may seem intimidating, we

have to learn to navigate through it step-by-step. Let’s start with looking at the red text. Harmony
found a safety violation (something bad happened during one of the possible executions), and in
particular thread(2) (thread T2) was trying to dereference the address ?alloc$pool [0]["lock"].

The allocmodule maintains a shared array pool that it uses for dynamic allocation. Apparently
T2 tried to access pool [0], but it does not exist, meaning that either it was not yet allocated, or it
had been freed since it was allocated. When we look at the top half of the figure, we see that in
fact thread T1 allocated pool [0] in turn 2, but T3 freed it in turn 4. Looking back down, we see
that T1 executed thread(1) and has since terminated, while T3 is executing thread(3).

Looking further at the stack traces, we can see that T3 was in the process of executing
release(?q.lock) within get(?q). T1 is currently executing acquire(?alloc.pool[0].lock) within

83

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .next : None, .value: None, .lock : Lock() }
6

7 def put(q, v):
8 let node = malloc({ .next : None, .value: v, .lock : Lock() }):
9 var nq = q

10 while nq != None:
11 acquire(?nq→lock)
12 let n = nq→next :
13 if n == None:
14 nq→next = node
15 release(?nq→lock)
16 nq = n
17

18 def get(q) returns next :
19 acquire(?q→lock)
20 if q→next == None:
21 next = None
22 else:
23 let node = q→next :
24 q→next = node→next
25 next = node→value
26 free(node)
27 release(?q→lock)

Figure 14.1: [code/queue broken.hny] Another buggy queue implementation

84

https://harmony.cs.cornell.edu/code/queue_broken.hny

$ harmony -m queue=queue broken code/queue btest1.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 8)

– 21423 states (time 0.01s, mem=0.002GB)

� Phase 3: analysis

– Safety Violation

� Phase 4: write results to code/queue btest1.hco
� Phase 5: loading code/queue btest1.hco

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()

– Line alloc/1: Initialize alloc$pool to {:}
– Line alloc/2: Initialize alloc$next to 0
– Line 4: Initialize q to { ”lock”: False, ”next”: None, ”value”: None }
– Line 16: Choose 2
– Line 16: Initialize nputs to 2
– Terminated

� Schedule thread T1: put test(1)

– Current values of global variables:

* alloc$next: 0
* alloc$pool: {:}
* nputs: 2
* q: { ”lock”: False, ”next”: None, ”value”: None }

– Line 7: Print [”call put”, 1]
– Line alloc/5: Set alloc$next to 1
– Line alloc/5: Initialize alloc$pool[0] to { ”lock”: False, ”next”: None, ”value”: 1

}
– Line synch/36: Set q[”lock”] to True
– Line queue/14: Set q[”next”] to ?alloc$pool[0]
– Line synch/41: Set q[”lock”] to False
– Preempted in put test(1) about to print [”done put”, 1] in line 9

� Schedule thread T2: put test(2)

– Current values of global variables:

* alloc$next: 1
* alloc$pool: [{ ”lock”: False, ”next”: None, ”value”: 1 }]
* nputs: 2
* q: { ”lock”: False, ”next”: ?alloc$pool[0], ”value”: None }

– Line 7: Print [”call put”, 2]
– Line alloc/5: Set alloc$next to 2 ...

Figure 14.2: Running Figure 13.2 against Figure 14.1

85

Figure 14.3: HTML output of Figure 14.2 but for NOPS=3

86

https://harmony.cs.cornell.edu/output/queuebug.html

put(?q, 2), but alloc.pool[0] does not exist. The corresponding line of Harmony code is atomi-
cally when not !binsema in line 25 of the sync module.

So, how did we get there? In the top we can see that the order of events was the following:

1. 0: initialization completed, with q being { .lock : False, .next : None, .value: None };

2. 1: thread T1 (thread(1)) ran and finished executing put(1) (see the output column for that
clue: the thread printed that). We can see that q.next now points to alloc.pool[0], which
the thread must have allocated. The contents is { .lock : False, .next : None, .value: 1 }, as
expected;

3. 2: thread T2 (thread(1)) started running, calling put(?q, 2). We can see it got as far
as putting 2 on the queue, but it is not yet done. It is currently trying to acquire
alloc.pool[0].lock ;

4. 3: thread T3 (thread(1)) started running, calling get(?q). We can also see that it freed
pool [0], and is now releasing q.lock ;

5. 4: thread T2 resumes and tries to access pool [0], which no longer exists (because T3 just freed
it).

Clearly there was a race in which T2 was trying to lock pool [0].lock (which contained the node
with the value 1) while T3 was freeing that very same node, and T2 lost the race. More precisely,
T2 was executing put(?q, 2), when T3 preempted it with get(?q) and removed the node that T2
was trying to access. But why did the locks not prevent this?

It is time to start stepping through the code that has been executed before this happened. This
is sometimes known as reverse debugging. In fact, Harmony allows you to step through an execution
forwards and backwards. In this case, we first want to see what T2 is doing. You can click on its
first (top-left) orange box to time-travel to that part in the execution. Now by hitting ⟨return⟩
repeatedly, we can quickly skip through the code. T2 first calls put(?q, 1) and then allocates a new
node initialized with a lock. Keep stepping until it executes nq = q. Hit ⟨return⟩ once more and
inspect the state of T2 in the lower-right corner. You can see that variable nq is initialized to ?q. T2
then enters into the while loop and tries to acquire nq→lock. This succeeds, and next T2 executes
let n = nq→next. Now n = ?alloc.pool[0], which is not None. It then releases nq→lock (nq
points to q). It then sets nq to n, which is still alloc.pool[0]. Finally, it calls acquire(?nq→lock).
But before it can complete that operation, T3 runs next.

T3 chooses "get" and then goes on to invoke get(?q). This first successfully acquires q}→lock.
T3 then finds out that q→next points to alloc.pool[0]. T3 sets node to alloc.pool[0] as well
and sets q→next to node→next. T3 sets the method result next to node→value (which is 1) and
then frees node. This is where the problem is—T2 is about to acquire the lock in that same node.

To fix the code without changing the data structure, we can use hand-over-hand locking (Chap-
ter 12). Figure 14.4 shows an implementation that uses hand-over-hand locking both for put() and
for get(). It passes all tests.

87

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .next : None, .value: None, .lock : Lock() }
6

7 def put(q, v):
8 var nq = q
9 let node = malloc({ .next : None, .value: v, .lock : Lock() }):

10 acquire(?nq→lock)
11 var n = nq→next
12 while n != None:
13 acquire(?n→lock)
14 release(?nq→lock)
15 nq = n
16 n = n→next
17 nq→next = node
18 release(?nq→lock)
19

20 def get(q) returns next :
21 acquire(?q→lock)
22 if q→next == None:
23 next = None
24 else:
25 let node = q→next :
26 acquire(?node→lock)
27 q→next = node→next
28 next = node→value
29 release(?node→lock)
30 free(node)
31 release(?q→lock)

Figure 14.4: [code/queue fix.hny] Queue implementation with hand-over-hand locking

88

https://harmony.cs.cornell.edu/code/queue_fix.hny

Chapter 15

Conditional Waiting

Critical sections enable multiple threads to easily share data structures whose modification requires
multiple steps. A critical section only allows one thread to execute the code of the critical section
at a time. Therefore, when a thread arrives at a critical section, the thread blocks until there is no
other thread in the critical section.

Sometimes it is useful for a thread to block waiting for additional conditions. For example,
when dequeuing from an empty shared queue, it may be useful for the thread to block until the
queue is non-empty instead of returning an error. The alternative would be busy waiting (aka
spin-waiting), where the thread repeatedly tries to dequeue an item until it is successful. Doing so
wastes CPU cycles and adds contention to queue access. A thread that is busy waiting until the
queue is non-empty cannot make progress until another thread enqueues an item. However, the
thread is not considered blocked because it is changing the shared state by repeatedly acquiring
and releasing the lock. A process that is waiting for a condition without changing the state (like in
a spinlock) is blocked. A process that is waiting for a condition while changing the state (such as
repeatedly trying to dequeue an item, which requires acquiring a lock) is actively busy waiting.

We would like to find a solution to conditional waiting so that a thread blocks until the con-
dition holds—or at least most of the time. Before we do so, we will give two classic examples of
synchronization problems that involve conditional waiting: reader/writer locks and bounded buffers.

15.1 Reader/Writer Locks

Locks are useful when accessing a shared data structure. By preventing more than one thread
from accessing the data structure at the same time, conflicting accesses are avoided. However, not all
concurrent accesses conflict, and opportunities for concurrency may be lost, hurting performance.
One important case is when multiple threads are simply reading the data structure. In many
applications, reads are the majority of all accesses, and read operations do not conflict with one
another. Allowing reads to proceed concurrently can significantly improve performance.

What we want is a special kind of lock that allows either (i) one writer or (ii) one or more
readers to acquire the lock. This is called a reader/writer lock [CHP71]. A reader/writer lock is an
object whose abstract (and opaque) state contains two integer counters (see Figure 15.1):

89

1 def RWlock() returns lock :
2 lock = { .nreaders: 0, .nwriters: 0 }
3

4 def read acquire(rw):
5 atomically when rw→nwriters == 0:
6 rw→nreaders += 1
7

8 def read release(rw):
9 atomically rw→nreaders –= 1

10

11 def write acquire(rw):
12 atomically when (rw→nreaders + rw→nwriters) == 0:
13 rw→nwriters = 1
14

15 def write release(rw):
16 atomically rw→nwriters = 0

Figure 15.1: [code/rwlock.hny] Specification of reader/writer locks

1. nreaders: the number of readers

2. nwriters: the number of writers

satisfying the following invariant:

� (nreaders ≥ 0 ∧ nwriters = 0) ∨ (nreaders = 0 ∧ 0 ≤ nwriters ≤ 1)

There are four operations on a reader/writer lock rw :

� read acquire(rw): waits until nwriters = 0 and then increments nreaders;

� read release(rw): decrements nreaders;

� write acquire(rw): waits until nreaders = nwriters = 0 and then sets nwriters to 1;

� write release(rw): sets nwriters to 0.

Figure 15.2 shows how reader/writer locks operations may be tested. Similar to ordinary locks,
a thread is restricted in how it is allowed to invoke these operations. In particular, a thread can
only release a reader/writer lock for reading if it acquired the lock for reading and the same for
writing.

A problem with this test is that it does not find a problem with an implementation like the one
in Figure 15.3. This implementation implements a reader/writer lock as an ordinary lock, and thus
lets only one thread in the critical section at a time. In some sense, the implementation is correct
because it satisfies the requirements, but it is clearly not a desirable implementation. For a case
like this one, it is better to compare behaviors between the specification and the implementation.

90

https://harmony.cs.cornell.edu/code/rwlock.hny

1 import rwlock
2

3 nreaders = nwriters = 0
4 invariant ((nreaders >= 0) and (nwriters == 0)) or
5 ((nreaders == 0) and (0 <= nwriters <= 1))
6

7 const NOPS = 3
8

9 rw = rwlock.RWlock()
10

11 def thread():
12 while choose({ False, True }):
13 if choose({ "read", "write" }) == "read":
14 rwlock.read acquire(?rw)
15 atomically nreaders += 1
16 atomically nreaders –= 1
17 rwlock.read release(?rw)
18 else: # write
19 rwlock.write acquire(?rw)
20 atomically nwriters += 1
21 atomically nwriters –= 1
22 rwlock.write release(?rw)
23

24 for i in {1..NOPS}:
25 spawn thread()

Figure 15.2: [code/rwlock test1.hny] Test code for reader/writer locks

91

https://harmony.cs.cornell.edu/code/rwlock_test1.hny

1 import synch
2

3 def RWlock() returns lock :
4 lock = synch.Lock()
5

6 def read acquire(rw):
7 synch.acquire(rw)
8

9 def read release(rw):
10 synch.release(rw)
11

12 def write acquire(rw):
13 synch.acquire(rw)
14

15 def write release(rw):
16 synch.release(rw)

Figure 15.3: [code/rwlock cheat.hny] ”Cheating” reader/writer lock

Figure 15.4 is the same test as Figure 15.2 but prints identifying information before and every
lock operation. Now we can compare behaviors as follows:

$ harmony -o rw.hfa -cNOPS=2 code/rwlock_btest.hny

$ harmony -B rw.hfa -cNOPS=2 -m rwlock=rwlock_cheat code/rwlock_btest.hny

The second command will print a warning that there are behaviors in the specification that are
not achieved by the implementation.

Figure 15.5 illustrates an implementation of a reader/writer lock that uses active busy waiting.
This is an undesirable solution, as it wastes CPU cycles. Harmony complains about this solution.

15.2 Bounded Buffer

A bounded buffer is a queue with the usual put/get interface, but implemented using a buffer
of a certain maximum length. If the buffer is full, an enqueuer must wait; if the buffer is empty, a
dequeuer must wait. Figure 15.6 specifies a bounded buffer. It is similar to the implementation in
Figure 11.1(b) but adds checking for bounds. Coming up with a good implementation is known as
the “Producer/Consumer Problem” and was proposed by Dijkstra [Dij72]. Multiple producers and
multiple consumers may all share the same bounded buffer.

The producer/consumer pattern is common. Threads may be arranged in pipelines, where each
upstream thread is a producer and each downstream thread is a consumer. Or threads may be
arranged in a manager/worker pattern, with a manager producing jobs and workers consuming and

92

https://harmony.cs.cornell.edu/code/rwlock_cheat.hny

1 import rwlock
2

3 const NOPS = 3
4

5 rw = rwlock.RWlock()
6

7 def thread(self):
8 while choose({ False, True }):
9 if choose({ "read", "write" }) == "read":

10 print(self, "enter ra")
11 rwlock.read acquire(?rw)
12 print(self, "exit ra")
13

14 print(self, "enter rr")
15 rwlock.read release(?rw)
16 print(self, "exit rr")
17 else: # write
18 print(self, "enter wa")
19 rwlock.write acquire(?rw)
20 print(self, "exit wa")
21

22 print(self, "enter wr")
23 rwlock.write release(?rw)
24 print(self, "enter wr")
25

26 for i in {1..NOPS}:
27 spawn thread(i)

Figure 15.4: [code/rwlock btest.hny] A behavioral test of reader/writer locks

93

https://harmony.cs.cornell.edu/code/rwlock_btest.hny

1 from synch import Lock, acquire, release
2

3 def RWlock() returns lock :
4 lock = { .lock : Lock(), .nreaders: 0, .nwriters: 0 }
5

6 def read acquire(rw):
7 acquire(?rw→lock)
8 while rw→nwriters > 0:
9 release(?rw→lock)

10 acquire(?rw→lock)
11 rw→nreaders += 1
12 release(?rw→lock)
13

14 def read release(rw):
15 acquire(?rw→lock)
16 rw→nreaders –= 1
17 release(?rw→lock)
18

19 def write acquire(rw):
20 acquire(?rw→lock)
21 while (rw→nreaders + rw→nwriters) > 0:
22 release(?rw→lock)
23 acquire(?rw→lock)
24 rw→nwriters = 1
25 release(?rw→lock)
26

27 def write release(rw):
28 acquire(?rw→lock)
29 rw→nwriters = 0
30 release(?rw→lock)

Figure 15.5: [code/rwlock busy.hny] Busy waiting reader/writer lock

94

https://harmony.cs.cornell.edu/code/rwlock_busy.hny

1 def BoundedBuffer(size) returns buffer :
2 buffer = { .buffer : [], .size: size }
3

4 def put(bb, v):
5 atomically when len(bb→buffer) < bb→size:
6 bb→buffer += [v,]
7

8 def get(bb) returns next :
9 atomically when bb→buffer != []:

10 next = bb→buffer [0]
11 del bb→buffer [0]

Figure 15.6: [code/boundedbuffer.hny] Bounded buffer specification

executing them in parallel. Or, in the client/server model, some thread may act as a server that
clients can send requests to and receive responses from. In that case, there is a bounded buffer for
each client/server pair. Clients produce requests and consume responses, while the server consumes
requests and produces responses.

Unlike an ordinary queue, where queues can grow arbitrarily, bounded buffers provide flow
control : if the consumer runs faster than the producer (or producers), it will automatically block
until there are new requests. Similarly, if the producers add requests at a rate that is higher than
the consumers can deal with, the producers are blocked. While a buffer of size 1 already provides
those properties, a larger buffer is able to deal with short spikes without blocking anybody.

95

https://harmony.cs.cornell.edu/code/boundedbuffer.hny

Chapter 16

Split Binary Semaphores

The Split Binary Semaphore (SBS) approach is a general technique for implementing conditional
waiting. It was originally proposed by Tony Hoare and popularized by Edsger Dijkstra [Dij79]. A
binary semaphore is a generalization of a lock. While a lock is always initialized in the released state,
a binary semaphore—if so desired—can be initialized in the acquired state. SBS is an extension
of a critical section that is protected by a lock. If there are n waiting conditions, then SBS uses
n+1 binary semaphores to protect the critical section. An ordinary critical section has no waiting
conditions and therefore uses just one binary semaphore (because n = 0). But, for example, a
bounded buffer has two waiting conditions:

1. consumers waiting for the buffer to be non-empty;

2. producers waiting for an empty slot in the buffer.

So, it will require 3 binary semaphores if the SBS technique is applied.
Think of each of these binary semaphores as a gate that a thread must go through in order to

enter the critical section. A gate is either open or closed. Initially, exactly one gate, the main gate,
is open. Each of the other gates, the waiting gates, is associated with a waiting condition. When a
gate is open, one thread can enter the critical section, closing the gate behind it.

When leaving the critical section, the thread must open exactly one of the gates, but it does not
have to be the gate that it used to enter the critical section. In particular, when a thread leaves
the critical section, it should check for each waiting gate if its waiting condition holds and if there
are threads trying to get through the gate. If there is such a gate, then it must select one and open
that gate. If there is no such gate, then it must open the main gate.

Finally, if a thread is executing in the critical section and needs to wait for a particular condition,
then it leaves the critical section and waits for the gate associated with that condition to open.

The following invariants hold:

� At any time, at most one gate is open;

� If some gate is open, then no thread is in the critical section. Equivalently, if some thread is
in the critical section, then all gates are closed;

� At any time, at most one thread is in the critical section.

96

1 from synch import BinSema, acquire, release
2

3 def RWlock() returns lock :
4 lock = {
5 .nreaders: 0, .nwriters: 0, .mutex : BinSema(False),
6 .r gate: { .sema: BinSema(True), .count : 0 },
7 .w gate: { .sema: BinSema(True), .count : 0 }
8 }
9

10 def release one(rw):
11 if (rw→nwriters == 0) and (rw→r gate.count > 0):
12 release(?rw→r gate.sema)
13 elif ((rw→nreaders + rw→nwriters) == 0) and (rw→w gate.count > 0):
14 release(?rw→w gate.sema)
15 else:
16 release(?rw→mutex)
17

18 def read acquire(rw):
19 acquire(?rw→mutex)
20 if rw→nwriters > 0:
21 rw→r gate.count += 1; release one(rw)
22 acquire(?rw→r gate.sema); rw→r gate.count –= 1
23 rw→nreaders += 1
24 release one(rw)
25

26 def read release(rw):
27 acquire(?rw→mutex); rw→nreaders –= 1; release one(rw)
28

29 def write acquire(rw):
30 acquire(?rw→mutex)
31 if (rw→nreaders + rw→nwriters) > 0:
32 rw→w gate.count += 1; release one(rw)
33 acquire(?rw→w gate.sema); rw→w gate.count –= 1
34 rw→nwriters += 1
35 release one(rw)
36

37 def write release(rw):
38 acquire(?rw→mutex); rw→nwriters –= 1; release one(rw)

Figure 16.1: [code/rwlock sbs.hny] Reader/Writer Lock using Split Binary Semaphores

97

https://harmony.cs.cornell.edu/code/rwlock_sbs.hny

The main gate is implemented by a binary semaphore, initialized in the released state (signifying
that the gate is open). The waiting gates each consist of a pair: a counter that counts how
many threads are waiting behind the gate and a binary semaphore initialized in the acquired state
(signifying that the gate is closed).

We will illustrate the technique using the reader/writer problem. Figure 16.1 shows code. The
first step is to enumerate all waiting conditions. In the case of the reader/writer problem, there are
two: a thread that wants to read may have to wait for a writer to leave the critical section, while a
thread that wants to write may have to wait until all readers have left the critical section or until
a writer has left. The state of a reader/writer lock thus consists of the following:

� nreaders: the number of readers in the critical section;

� nwriters: the number of writers in the critical section (0 or 1);

� mutex : the main gate binary semaphore;

� r gate: the waiting gate used by readers, consisting of a binary semaphore and the number
of readers waiting to enter;

� w gate: the waiting gate used by writers, similar to the readers’ gate.

Each of the read acquire, read release, write acquire, and write release methods must
maintain this state. First they have to acquire the mutex (i.e., enter the main gate). After acquiring
the mutex, read acquire and write acquire each must check to see if the thread has to wait.
If so, it increments the count associated with its respective gate, opens a gate (using method
release one), and then blocks until its waiting gate opens up.

release one() is the function that a thread uses when leaving the critical section. It must
check to see if there is a waiting gate that has threads waiting behind it and whose condition is
met. If so, it selects one and opens that gate. In the given code, release one() first checks the
readers’ gate and then the writers’ gate, but the other way around works as well. If neither waiting
gate qualifies, then release one() has to open the main gate (i.e., release mutex).

Let us examine read acquire more carefully. First, the method acquires mutex. Then, in the
case that the thread finds that there is a writer in the critical section (nwriters > 0), it increments
the counter associated with the readers’ gate, leaves the critical section (release one), and then
tries to acquire the binary semaphore associated with the waiting gate. This causes the thread to
block until some other thread opens that gate.

Now consider the case where there is a writer in the critical section and there are two readers
waiting. Let us see what happens when the writer calls write release:

1. After acquiring mutex, the writer decrements nwriters, which must be 1 at this time, and thus
becomes 0.

2. It then calls release one(). release one() finds that there are no writers in the critical
section and there are two readers waiting. It therefore releases not mutex but the readers’
gate’s binary semaphore.

3. One of the waiting readers can now re-enter the critical section. When it does, the reader
decrements the gate’s counter (from 2 to 1) and increments nreaders (from 0 to 1). The reader
finally calls release one().

98

4. Again, release one() finds that there are no writers and that there are readers waiting, so
again it releases the readers’ semaphore.

5. The second reader can now enter the critical section. It decrements the gate’s count from 1
to 0 and increments nreaders from 1 to 2.

6. Finally, the second reader calls release one(). This time release one() does not find any
threads waiting, and so it releases mutex. There are now two reader threads that are holding
the reader/writer lock.

Exercises

16.1 Several of the calls to release one() in Figure 16.1 can be replaced by simply releasing
mutex. Which ones?

16.2 Optimize your solutions to Exercise 11.1 to use reader/writer locks.

16.3 Implement a solution to the producer/consumer problem using split binary semaphores.

16.4 Using busy waiting, implement a “bound lock” that allows up to M threads to acquire it at
the same time.1

A bound lock with M = 1 is an ordinary lock. You should define a constant M and two methods:
acquire bound lock() and release bound lock(). (Bound locks are useful for situations where
too many threads working at the same time might exhaust some resource such as a cache.)

16.5 Write a test program for your bound lock that checks that no more than M threads can acquire
the bound lock.

16.6 Write a test program for bound locks that checks that up to M threads can acquire the bound
lock at the same time.

16.7 Implement a thread-safe GPU allocator by modifying Figure 16.2. There are N GPUs iden-
tified by the numbers 1 through N. Method gpuAlloc() returns the identifier of an available GPU,
blocking if there is currently no GPU available. Method gpuRelease(gpu) releases the given GPU.
It never needs to block.

16.8 With reader/writer locks, concurrency can be improved if a thread downgrades its write lock
to a read lock when its done writing but not done reading. Add a downgrade method to the code
in Figure 16.1. (Similarly, you may want to try to implement an upgrade of a read lock to a write
lock. Why is this problematic?)

16.9 Cornell’s campus features some one-lane bridges. On a one-lane bridge, cars can only go in
one direction at a time. Consider northbound and southbound cars wanting to cross a one-lane
bridge. The bridge allows arbitrary many cars, as long as they’re going in the same direction.
Implement a lock that observes this requirement using SBS. Write methods OLBlock() to create
a new “one lane bridge” lock, nb enter() that a car must invoke before going northbound on the
bridge and nb leave() that the car must invoke after leaving the bridge. Similarly write sb enter()
and sb leave() for southbound cars.

1A bound lock is a restricted version of a counting semaphore.

99

1 const N = 10
2

3 availGPUs = {1..N}
4

5 def gpuAlloc() returns gpu:
6 gpu = choose(availGPUs)
7 availGPUs –= { result }
8

9 def gpuRelease(gpu):
10 availGPUs |= { gpu }

Figure 16.2: [code/gpu.hny] A thread-unsafe GPU allocator

16.10 Extend the solution to Exercise 16.9 by implementing the requirement that at most n cars
are allowed on the bridge. Add n as an argument to OLBlock.

100

https://harmony.cs.cornell.edu/code/gpu.hny

Chapter 17

Starvation

A property is a set of traces. If a program has a certain property, that means that the traces
that that program allows are a subset of the traces in the property. So far, we have pursued
two properties: mutual exclusion and progress. The former is an example of a safety property—
it prevents something “bad” from happening, like a reader and writer thread both acquiring a
reader/writer lock. The progress property is an example of a liveness property—guaranteeing that
something good eventually happens. Informally (and inexactly), progress states that if no threads
are in the critical section, then some thread that wants to enter can.

Progress is a weak form of liveness. It says that some thread can enter, but it does not prevent a
scenario such as the following. There are three threads repeatedly trying to enter a critical section
using a spinlock. Two of the threads successfully keep entering, alternating, but the third thread
never gets a turn. This is an example of starvation. With a spinlock, this scenario could even
happen with two threads. Initially both threads try to acquire the spinlock. One of the threads
is successful and enters. After the thread leaves, it immediately tries to re-enter. This state is
identical to the initial state, and there is nothing that prevents the same thread from acquiring the
lock yet again.

Peterson’s Algorithm (Figure 6.1) does not suffer from starvation, thanks to the turn variable
that alternates between 0 and 1 when two threads are contending for the critical section. Ticket
locks (Figure 10.2) are also free from starvation.

While spinlocks suffer from starvation, it is a uniform random process and each thread has an
equal chance of entering the critical section. Thus the probability of starvation is exponentially
vanishing. We shall call such a solution fair (although it does not quite match the usual formal nor
vernacular concepts of fairness).

Unfortunately, such is not the case for the reader/writer solution that we presented in Chap-
ter 16. Consider this scenario: there are two readers and one writer. One reader is in the critical
section while the writer is waiting. Now the second reader tries to enter and is able to. The first
reader leaves. We are now in a similar situation as the initial state with one reader in the critical
section and the writer waiting, but it is not the same reader. Unfortunately for the writer, this

101

1 from synch import BinSema, acquire, release
2

3 def RWlock() returns lock :
4 lock = {
5 .nreaders: 0, .nwriters: 0, .mutex : BinSema(False),
6 .r gate: { .sema: BinSema(True), .count : 0 },
7 .w gate: { .sema: BinSema(True), .count : 0 }
8 }
9

10 def read acquire(rw):
11 acquire(?rw→mutex)
12 if (rw→nwriters > 0) or (rw→w gate.count > 0):
13 rw→r gate.count += 1; release(?rw→mutex)
14 acquire(?rw→r gate.sema); rw→r gate.count –= 1
15 rw→nreaders += 1
16 if rw→r gate.count > 0:
17 release(?rw→r gate.sema)
18 else:
19 release(?rw→mutex)
20

21 def read release(rw):
22 acquire(?rw→mutex)
23 rw→nreaders –= 1
24 if (rw→w gate.count > 0) and (rw→nreaders == 0):
25 release(?rw→w gate.sema)
26 else:
27 release(?rw→mutex)
28

29 def write acquire(rw):
30 acquire(?rw→mutex)
31 if (rw→nreaders + rw→nwriters) > 0:
32 rw→w gate.count += 1; release(?rw→mutex)
33 acquire(?rw→w gate.sema); rw→w gate.count –= 1
34 rw→nwriters += 1
35 release(?rw→mutex)
36

37 def write release(rw):
38 acquire(?rw→mutex)
39 rw→nwriters –= 1
40 if rw→r gate.count > 0:
41 release(?rw→r gate.sema)
42 elif rw→w gate.count > 0:
43 release(?rw→w gate.sema)
44 else:
45 release(?rw→mutex)

Figure 17.1: [code/rwlock fair.hny] Reader/Writer Lock SBS implementation addressing fairness

102

https://harmony.cs.cornell.edu/code/rwlock_fair.hny

scenario can repeat itself indefinitely. So, even if neither reader was in the critical section all of the
time, and the second reader arrived well after the writer, the writer never had a chance.

SBSs allow much control over which type of thread runs next and is therefore a good starting
point for developing fair synchronization algorithms. Figure 17.1 is based on Figure 16.1, but there
are two important differences:

1. When a reader tries to enter the critical section, it yields not only if there are writers in the
critical section, but also if there are writers waiting to enter the critical section;

2. Instead of a one-size-fits-all release one method, each method has a custom way of selecting
which gate to open. In particular, read release prefers the write gate, while write release

prefers the read gate.

The net effect of this is that if there is contention between readers and writers, then readers and
writers end up alternating entering the critical section. While readers can still starve other readers
and writers can still starve other writers, readers can no longer starve writers nor vice versa. Other
fairness is based on the fairness of semaphores themselves.

Exercises

17.1 Write a fair solution to the one-lane bridge problem of Exercise 16.9.

103

Chapter 18

Monitors

Tony Hoare, who came up with the concept of split binary semaphores (SBS), devised an
abstraction of the concept in a programming language paradigm called monitors [Hoa74]. (A
similar construct was independently invented by Per Brinch Hansen [BH73].) A monitor is a
special version of an object-oriented class, comprising a set of variables and methods that operate
on those variables. A monitor also has special variables called condition variables, one per waiting
condition. There are two operations on condition variables: wait and signal.

Harmony does not have language support for monitors, but it has a module called hoare.
Figure 18.1 shows its implementation. A Hoare monitor uses a hidden split binary semaphore.
The mutex semaphore is acquired when entering a monitor and released upon exit. Each condition
variable maintains a binary semaphore and a counter for the number of threads waiting on the
condition. Method wait increments the condition’s counter, releases the monitor mutex, blocks
while trying to acquire the condition’s semaphore, and upon resuming decrements the counter—in
much the same way as we have seen for SBS. Method signal checks to see if the condition’s count
is non-zero, if so releases the condition’s semaphore, and then blocks by trying to acquire the mutex
again.

Figure 18.2 presents a bounded buffer implemented using Hoare monitors. It is written in much
the same way you would if using the SBS technique (see Exercise 16.3). However, there is no
release one method. Instead, one can conclude that put guarantees that the queue will be non-
empty, and signal will check if there are any threads waiting for this event. If so, signal will
pass control to one such thread and, unlike release one, re-enter the critical section afterwards by
acquiring the mutex.

Implementing a reader/writer lock with Hoare monitors is not quite so straightforward, unfor-
tunately. When a writer releases the lock, it has to choose whether to signal a reader or another
writer. For that it needs to know if there is a reader or writer waiting. The simplest solution would
be to peek at the counters inside the respective condition variables, but that breaks the abstraction.
The alternative is for the reader/writer implementation to keep track of that state explicitly, which
complicates the code. Also, it requires a deep understanding of the SBS method to remember to
place a call to signal in the read acquire method that releases additional readers that may be
waiting to acquire the lock.

104

1 import synch
2

3 def Monitor() returns monitor :
4 monitor = synch.Lock()
5

6 def enter(mon):
7 synch.acquire(mon)
8

9 def exit(mon):
10 synch.release(mon)
11

12 def Condition() returns condition:
13 condition = { .sema: synch.BinSema(True), .count : 0 }
14

15 def wait(cond, mon):
16 cond→count += 1
17 exit(mon)
18 synch.acquire(?cond→sema)
19 cond→count –= 1
20

21 def signal(cond, mon):
22 if cond→count > 0:
23 synch.release(?cond→sema)
24 enter(mon)

Figure 18.1: [modules/hoare.hny] Implementation of Hoare monitors

105

https://harmony.cs.cornell.edu/modules/hoare.hny

1 import hoare
2

3 def BoundedBuffer(size) returns buffer :
4 buffer = {
5 .mon: hoare.Monitor(),
6 .prod : hoare.Condition(), .cons: hoare.Condition(),
7 .buf : { x :() for x in {1..size} },
8 .head : 1, .tail : 1,
9 .count : 0, .size: size

10 }
11

12 def Queue() returns empty:
13 empty = BoundedBuffer(4)
14

15 def put(bb, item):
16 hoare.enter(?bb→mon)
17 if bb→count == bb→size:
18 hoare.wait(?bb→prod, ?bb→mon)
19 bb→buf [bb→tail] = item
20 bb→tail = (bb→tail % bb→size) + 1
21 bb→count += 1
22 hoare.signal(?bb→cons, ?bb→mon)
23 hoare.exit(?bb→mon)
24

25 def get(bb) returns next :
26 hoare.enter(?bb→mon)
27 if bb→count == 0:
28 hoare.wait(?bb→cons, ?bb→mon)
29 next = bb→buf [bb→head]
30 bb→head = (bb→head % bb→size) + 1
31 bb→count –= 1
32 hoare.signal(?bb→prod, ?bb→mon)
33 hoare.exit(?bb→mon)

Figure 18.2: [code/boundedbuffer hoare.hny] Bounded Buffer implemented using a Hoare monitor

106

https://harmony.cs.cornell.edu/code/boundedbuffer_hoare.hny

In the late 70s, researchers at Xerox PARC, where among others the desktop and Ethernet
were invented, developed a new programming language called Mesa [LR80]. Mesa introduced vari-
ous important concepts to programming languages, including software exceptions and incremental
compilation. Mesa also incorporated a version of monitors. However, there are some subtle but
important differences with Hoare monitors that make Mesa monitors quite unlike split binary
semaphores and mostly easier to use in practice.

As in Hoare monitors, there is a hidden mutex associated with each Mesa monitor, and the
mutex must be acquired upon entry to a method and released upon exit. Mesa monitors also have
condition variables that a thread can wait on. Like in Hoare monitors, the wait operation releases
the mutex. The most important difference is in what signal does. To make the distinction more
clear, we shall call the corresponding Mesa operation notify rather than signal. Unlike signal,
when a thread p invokes notify it does not immediately pass control to a thread that is waiting
on the corresponding condition (if there is such a thread). Instead, p continues executing in the
critical section until it leaves the monitor (by calling release) or releases the monitor (by calling
wait). Either way, any thread that was notified will now have a chance to enter the critical section,
but they compete with other threads trying to enter the critical section.

Basically, there is just one gate to enter the critical section, instead of a main gate and a gate
per waiting condition. This is a very important difference. In Hoare monitors, when a thread enters
through a waiting gate, it can assume that the condition associated with the waiting gate still holds
because no other thread can run in between. Not so with Mesa monitors: by the time a thread
that was notified enters through the main gate, other threads may have entered first and falsified
the condition. So, in Mesa, threads always have to check the condition again after resuming from
the wait operation. This is accomplished by wrapping each wait operation in a while statement
that loops until the condition of interest becomes valid. A Mesa monitor therefore is more closely
related to busy waiting than to split binary semaphores.

Mesa monitors also allow notifying multiple threads. For example, a thread can invoke notify
twice—if there are two or more threads waiting on the condition variable, two will be resumed. Op-
eration notifyAll (aka broadcast)) notifies all threads that are waiting on a condition. Signaling
multiple threads is not possible with Hoare monitors because with Hoare monitors control must be
passed immediately to a thread that has been signaled, and that can only be done if there is just
one such thread.

The so-called “Mesa monitor semantics” or “Mesa condition variable semantics” have become
more popular than Hoare monitor semantics and have been adopted by all major programming
languages. That said, few programming languages provide full syntactical support for monitors,
instead opting to support monitor semantics through library calls. In Java, each object has a hidden
lock and a hidden condition variable associated with it. Methods declared with the synchronized
keyword automatically obtain the lock. Java objects also support wait, notify, and notifyAll.
In addition, Java supports explicit allocations of locks and condition variables. In Python, locks
and condition variables must be explicitly declared. The with statement makes it easy to acquire
and release a lock for a section of code. In C and C++, support for locks and condition variables
is entirely through libraries.

Harmony provides support for Mesa monitors through the Harmony synch module. Figure 18.3
shows the implementation of condition variables in the synch module. Condition() creates a new
condition variable. It is represented by a dictionary containing a bag of contexts of threads waiting
on the condition variable. (The synchS library instead uses a list of contexts.)

107

1 def Condition() returns condition:
2 condition = bag.empty()
3

4 def wait(c, lk):
5 var cnt = 0
6 let , ctx = save():
7 atomically:
8 cnt = bag.multiplicity(!c, ctx)
9 !c = bag.add(!c, ctx)

10 !lk = False
11 atomically when (not !lk) and (bag.multiplicity(!c, ctx) <= cnt):
12 !lk = True
13

14 def notify(c):
15 atomically if !c != bag.empty():
16 !c = bag.remove(!c, bag.bchoose(!c))
17

18 def notifyAll(c):
19 !c = bag.empty()

Figure 18.3: [modules/synch.hny] Implementation of condition variables in the synch module

In Harmony, a bag is usually represented by a dictionary that maps the elements of the bag to
their multiplicities. For example, the value { .a: 2, .b: 3 } represents a bag with two copies of .a
and three copies of .b. The bag module (Section B.3) contains a variety of handy functions on bags.

Method wait adds the context of the thread—used as a unique identifier for the thread—to the
bag, incrementing the number of threads in the bag with the same context. The Harmony save
expression (Section C.3) returns a tuple containing a value (in this case ‘()’) and the context of the
thread. wait then loops until that count is restored to the value that it had upon entry to wait.
Method notify removes an arbitrary context from the bag, allowing one of the threads with that
context to resume and re-acquire the lock associated with the monitor. notifyAll empties out the
entire bag, allowing all threads in the bag to resume.

To illustrate how Mesa condition variables are used in practice, we demonstrate using an im-
plementation of reader/writer locks. Figure 18.4 shows the code. mutex is the shared lock that
protects the critical region. There are two condition variables: readers wait on r cond and writers
wait on w cond. The implementation also keeps track of the number of readers and writers in the
critical section.

Note that wait is always invoked within a while loop that checks for the condition that the
thread is waiting for. It is imperative that there is always a while loop around any invocation of
wait containing the negation of the condition that the thread is waiting for. Many implementation
of Mesa condition variables depend on this, and optimized implementations of condition variables
often allow so-called “spurious wakeups,” where wait may sometimes return even if the conditon
variable has not been notified. As a rule of thumb, one should always be able to replace wait by

108

https://harmony.cs.cornell.edu/modules/synch.hny

1 from synch import *
2

3 def RWlock() returns lock :
4 lock = {
5 .nreaders: 0, .nwriters: 0, .mutex : Lock(),
6 .r cond : Condition(), .w cond : Condition()
7 }
8

9 def read acquire(rw):
10 acquire(?rw→mutex)
11 while rw→nwriters > 0:
12 wait(?rw→r cond, ?rw→mutex)
13 rw→nreaders += 1
14 release(?rw→mutex)
15

16 def read release(rw):
17 acquire(?rw→mutex)
18 rw→nreaders –= 1
19 if rw→nreaders == 0:
20 notify(?rw→w cond)
21 release(?rw→mutex)
22

23 def write acquire(rw):
24 acquire(?rw→mutex)
25 while (rw→nreaders + rw→nwriters) > 0:
26 wait(?rw→w cond, ?rw→mutex)
27 rw→nwriters = 1
28 release(?rw→mutex)
29

30 def write release(rw):
31 acquire(?rw→mutex)
32 rw→nwriters = 0
33 notifyAll(?rw→r cond)
34 notify(?rw→w cond)
35 release(?rw→mutex)

Figure 18.4: [code/rwlock cv.hny] Reader/Writer Lock using Mesa-style condition variables

109

https://harmony.cs.cornell.edu/code/rwlock_cv.hny

release followed by acquire. This turns the solution into a busy-waiting one, inefficient but still
correct.

In read release, notice that notify(?w cond) is invoked when there are no readers left, without
checking if there are writers waiting to enter. This is ok, because calling notify is a no-op if no
thread is waiting.

write release executes notifyAll(?r cond) as well as notify(?w cond). Because we do not
keep track of the number of waiting readers or writers, we have to conservatively assume that all
waiting readers can enter, or, alternatively, up to one waiting writer can enter. So write release

wakes up all potential candidates. There are two things to note here. First, unlike split binary
semaphores or Hoare monitors, where multiple waiting readers would have to be signaled one at a
time in a baton-passing fashion (see Figure 16.1), with Mesa monitors all readers are awakened in
one fell swoop using notifyAll. Second, both readers and writers are awakened—this is ok because
both execute wait within a while loop, re-checking the condition that they are waiting for. So, if
both type of threads are waiting, either all the readers get to enter next or one of the writers gets
to enter next. (If you want to prevent waking up both readers and a writer, then you can keep
track of how many threads are waiting in the code.)

When using Mesa condition variables, you have to be careful to invoke notify or notifyAll in
the right places. Much of the complexity of programming with Mesa condition variables is in figuring
out when to invoke notify and when to invoke notifyAll. As a rule of thumb: be conservative—it
is better to wake up too many threads than too few. In case of doubt, use notifyAll. Waking up
too many threads may lead to some inefficiency, but waking up too few may cause the application
to get stuck. Harmony can be particularly helpful here, as it examines each and every corner case.
You can try to replace each notifyAll with notify and see if every possible execution of the
application still terminates.

Andrew Birrell’s paper on Programming with Threads gives an excellent introduction to working
with Mesa-style condition variables [Bir89].

Exercises

18.1 Implement a solution to the bounded buffer problem using Mesa condition variables.

18.2 Implement a “try lock” module using Mesa condition variables (see also Exercise 10.3). It
should have the following API:

1. tl = TryLock() # create a try lock

2. acquire(?tl) # acquire a try lock

3. tryAcquire(?tl) # attempt to acquire a try lock

4. release(?tl) # release a try lock

tryAcquire should not wait. Instead it should return True if the lock was successfully acquired
and False if the lock was not available.

18.3 Write a new version of the GPU allocator in Exercise 16.7 using Mesa condition variables. In
this version, a thread is allowed to allocate a set of GPUs and release a set of GPUs that it has
allocated. Method gpuAllocSet(n) should block until n GPUs are available, but it should grant
them as soon as they are available. It returns a set of n GPU identifiers. Method gpuReleaseSet(s)

110

takes a set of GPU identifiers as argument. A thread does not have to return all the GPUs it
allocated at once. (You may want to try implementing this with Split Binary Semaphores. It is
not as easy.)

18.4 The specification in the previous question makes the solution unfair. Explain why this is so.
Then change the specification and the solution so that it is fair.

18.5 Bonus problem: Figure 18.5 shows an iterative implementation of the Qsort algorithm, and
Figure 18.6 an accompanying test program. The array to be sorted is stored in shared variable
testqs.arr. Another shared variable, testqs.todo, contains the ranges of the array that need to be
sorted (initially the entire array). Re-using as much of this code as you can, implement a parallel
version of this. You should not have to change the methods swap, partition, or sortrange for
this. Create NWORKERS “worker threads” that should replace the qsort code. Each worker loops
until todo is empty and sorts the ranges that it finds until then. The main thread needs to wait
until all workers are done.

111

1 def Qsort(arr) returns state:
2 state = { .arr : arr, .todo: { (0, len(arr) – 1) } }
3

4 def swap(p, q): # swap !p and !q
5 !p, !q = !q, !p
6

7 def partition(qs, lo, hi) returns pivot :
8 pivot = lo
9 for i in {lo..hi – 1}:

10 if qs→arr [i] <= qs→arr [hi]:
11 swap(?qs→arr [pivot], ?qs→arr [i])
12 pivot += 1
13 swap(?qs→arr [pivot], ?qs→arr [hi])
14

15 def sortrange(qs, range):
16 let lo, hi = range let pivot = partition(qs, lo, hi):
17 if (pivot – 1) > lo:
18 qs→todo |= { (lo, pivot – 1) }
19 if (pivot + 1) < hi :
20 qs→todo |= { (pivot + 1, hi) }
21

22 def sort(qs) returns sorted:
23 while qs→todo != {}:
24 let range = choose(qs→todo):
25 qs→todo –= { range }
26 sortrange(qs, range)
27 sorted = qs→arr

Figure 18.5: [code/qsort.hny] Iterative qsort() implementation

1 import qsort, bag
2

3 const NITEMS = 4
4

5 a = [choose({1..NITEMS}) for i in {1..choose({1..NITEMS})}]
6 testqs = qsort.Qsort(a)
7 sa = qsort.sort(?testqs)
8 assert all(sa[i – 1] <= sa[i] for i in {1..len(sa)–1}) # sorted?
9 assert bag.fromList(a) == bag.fromList(sa) # is it a permutation?

Figure 18.6: [code/qsorttest.hny] Test program for Figure 18.5

112

https://harmony.cs.cornell.edu/code/qsort.hny
https://harmony.cs.cornell.edu/code/qsorttest.hny

Chapter 19

Deadlock

When multiple threads are synchronizing access to shared resources, they may end up in a
deadlock situation where one or more of the threads end up being blocked indefinitely because each
is waiting for another to give up a resource. The famous Dutch computer scientist Edsger W.
Dijkstra illustrated this using a scenario he called “Dining Philosophers.”

Imagine five philosopers sitting around a table, each with a plate of food in front of them and
a fork between every two plates. Each philosopher requires two forks to eat. To start eating, a
philosopher first picks up the fork on the left, then the fork on the right. Each philosopher likes to
take breaks from eating to think for a while. To do so, the philosopher puts down both forks. Each
philosopher repeats this procedure. Dijkstra had them repeating this for ever, but for the purposes
of this book, philosophers can—if they wish—leave the table when they are not using any forks.

Figure 19.1 implements the dining philosophers in Harmony, using a thread for each philosopher
and a lock for each fork. If you run it, Harmony complains that the execution may not be able to
terminate, with all five threads being blocked trying to acquire the lock.

� Do you see what the problem is?

� Does it depend on N, the number of philosophers?

� Does it matter in what order the philosophers lay down their forks?

There are four conditions that must hold for deadlock to occur [CES71]:

1. Mutual Exclusion: each resource can only be used by one thread at a time:

2. Hold and Wait : each thread holds resources it already allocated while it waits for other
resources that it needs;

3. No Preemption: resources cannot be forcibly taken away from threads that allocated them;

4. Circular Wait : there exists a directed circular chain of threads, each waiting to allocate a
resource held by the next.

Preventing deadlock thus means preventing that one of these conditions occurs. However, mu-
tual exclusion is not easily prevented in general (although, for some resources it is possible, as
demonstrated in Chapter 24). Havender proposed the following techniques that avoid the remain-
ing three conditions [Hav68]:

113

1 from synch import Lock, acquire, release
2

3 const N = 5
4

5 forks = [Lock(),] * N

6

7 def diner(which):
8 let left, right = (which, (which + 1) % N):
9 while choose({ False, True }):

10 acquire(?forks[left])
11 acquire(?forks[right])
12 # dine
13 release(?forks[left])
14 release(?forks[right])
15 # think
16

17 for i in {0..N–1}:
18 spawn diner(i)

Figure 19.1: [code/Diners.hny] Dining Philosophers

� No Hold and Wait : a thread must request all resources it is going to need at the same time;

� Preemption: if a thread is denied a request for a resource, it must release all resources that it
has already acquired and start over;

� No Circular Wait : define an ordering on all resources and allocate resources in a particular
order.

To implement a No Hold and Wait solution, a philosopher would need a way to lock both the
left and right forks at the same time. Locks do not have such an ability, and neither do semaphores.
so we re-implement the Dining Philosophers using condition variables that allow one to wait for
arbitrary application-specific conditions. Figure 19.2 demonstrates how this might be done. We use
a single mutex for the diners, and, for each fork, a boolean and a condition variable. The boolean
indicates if the fork has been taken. Each diner waits if either the left or right fork is already taken.
But which condition variable to wait on? The code demonstrates an important technique to use
when waiting for multiple conditions. The condition in the while statement is the negation of the
condition that the diner is waiting for and consists of two disjuncts. Within the while statement,
there is an if statement for each disjunct. The code waits for either or both forks if necessary. After
that, it goes back to the top of the while loop.

A common mistake is to write the following code instead:

114

https://harmony.cs.cornell.edu/code/Diners.hny

1 import synch
2

3 const N = 5
4

5 mutex = synch.Lock()
6 forks = [False,] * N

7 conds = [synch.Condition(),] * N

8

9 def diner(which):
10 let left, right = (which, (which + 1) % N):
11 while choose({ False, True }):
12 synch.acquire(?mutex)
13 while forks[left] or forks[right]:
14 if forks[left]:
15 synch.wait(?conds[left], ?mutex)
16 if forks[right]:
17 synch.wait(?conds[right], ?mutex)
18 assert not (forks[left] or forks[right])
19 forks[left] = forks[right] = True
20 synch.release(?mutex)
21 # dine
22 synch.acquire(?mutex)
23 forks[left] = forks[right] = False
24 synch.notify(?conds[left])
25 synch.notify(?conds[right])
26 synch.release(?mutex)
27 # think
28

29 for i in {0..N–1}:
30 spawn diner(i)

Figure 19.2: [code/DinersCV.hny] Dining Philosophers that grab both forks at the same time

115

https://harmony.cs.cornell.edu/code/DinersCV.hny

1 while forks[left]:
2 synch.wait(?conds[left], ?mutex)
3 while forks[right]:
4 synch.wait(?conds[right], ?mutex)

� Can you see why this does not work? What can go wrong?

� Run it through Harmony in case you are not sure!

The Preemption approach suggested by Havender is to allow threads to back out. While this
could be done, this invariably leads to a busy waiting solution where a thread keeps obtaining locks
and releasing them again until it finally is able to get all of them.

The No Circular Waiting approach is to prevent a cycle from forming, with each thread waiting
for the next thread on the cycle. We can do this by establishing an ordering among the resources (in
this case the forks) and, when needing more than one resource, always acquiring them in order. In
the case of the philosopers, they could prevent deadlock by always picking up the lower numbered
fork before the higher numbered fork, like so:

1 if left < right :
2 synch.acquire(?forks[left])
3 synch.acquire(?forks[right])
4 else:
5 synch.acquire(?forks[right])
6 synch.acquire(?forks[left])

or like so:

1 synch.acquire(?forks[min(left, right)])
2 synch.acquire(?forks[max(left, right)])

This completes all the Havender methods. There is, however, another approach, which is some-
times called deadlock avoidance instead of deadlock prevention. In the case of the Dining Philoso-
phers, we want to avoid the situation where each diner picks up a fork. If we can prevent more than
four diners from starting to eat at the same time, then we can avoid the conditions for deadlock from
ever happening. Figure 19.3 demonstrates this concept. It uses a counting semaphore to restrict
the number of diners at any time to four. A counting semaphore is like a binary semaphore, but
can be acquired a given number of times. It is supported by the synch module. The P or “procure”
operation acquires a counting semaphore. That is, it tries to decrement the semaphore, blocking
while the semaphore has a value of 0. The V or “vacate” operation increments the semaphore.

This avoidance technique can be generalized using something called the Banker’s Algo-
rithm [Dij64], but it is outside the scope of this book. The problem with these kinds of schemes
is that one needs to know ahead of time the set of threads and what the maximum number of
resources is that each thread wants to allocate, making them generally quite impractical.

116

1 from synch import *
2

3 const N = 5
4

5 forks = [Lock(),] * N

6 sema = Semaphore(N – 1) # can be procured up to N−1 times
7

8 def diner(which):
9 let left, right = (which, (which + 1) % N):

10 while choose({ False, True }):
11 P(?sema) # procure counting semaphore
12 acquire(?forks[left])
13 acquire(?forks[right])
14 # dine
15 release(?forks[left])
16 release(?forks[right])
17 V(?sema) # vacate counting semaphore
18 # think
19

20 for i in {0..N–1}:
21 spawn diner(i)

Figure 19.3: [code/DinersAvoid.hny] Dining Philosophers that carefully avoid getting into a dead-
lock scenario

117

https://harmony.cs.cornell.edu/code/DinersAvoid.hny

Exercises

19.1 The solution in Figure 19.2 can be simplified by, instead of having a condition variable per
fork, having a condition variable per diner. It uses the same number of condition variables, but you
will not need to have if statements nested inside the while loop waiting for the forks. See if you
can figure it out.

19.2 Figure 19.4 shows an implementation of a bank with various accounts and transfers between
those accounts. Unfortunately, running the test reveals that it sometimes leaves unterminated
threads. Can you fix the problem?

19.3 Add a method total() to the solution of the previous question that computes the total over
all balances. It needs to obtain a lock on all accounts. Make sure that it cannot cause deadlock.

19.4 Add an invariant that checks that the total of the balances never changes. Note that the
invariant only holds if none of the locks are held.

118

1 from synch import Lock, acquire, release
2

3 const MAX BALANCE = 2
4 const N ACCOUNTS = 2
5 const N THREADS = 2
6

7 accounts = [{ .lock : Lock(), .balance: choose({0..MAX BALANCE})}
8 for i in {1..N ACCOUNTS}]
9

10 def transfer(a1, a2, amount) returns success:
11 acquire(?accounts[a1].lock)
12 if amount <= accounts[a1].balance:
13 accounts[a1].balance –= amount
14 acquire(?accounts[a2].lock)
15 accounts[a2].balance += amount
16 release(?accounts[a2].lock)
17 success = True
18 else:
19 success = False
20 release(?accounts[a1].lock)
21

22 def thread():
23 let a1 = choose({0..N ACCOUNTS–1})
24 let a2 = choose({0..N ACCOUNTS–1} – { a1 }):
25 transfer(a1, a2, choose({1..MAX BALANCE}))
26

27 for i in {1..N THREADS}:
28 spawn thread()

Figure 19.4: [code/bank.hny] Bank accounts

119

https://harmony.cs.cornell.edu/code/bank.hny

Chapter 20

Actors and Message Passing

Some programming languages favor a different way of implementing synchronization using so-
called actors [HBS73, Agh86]. Actors are threads that have only private memory and communicate
through message passing. See Figure 20.1 for an illustration. Given that there is no shared memory
in the actor model (other than the message queues, which have built-in synchronization), there
is no need for critical sections. Instead, some sequential thread owns a particular piece of data
and other threads access it by sending request messages to the thread and optionally waiting for
response messages. Each thread handles one message at a time, serializing all access to the data it
owns. As message queues are FIFO (First-In-First-Out), starvation is prevented.

The actor synchronization model is popular in a variety of programming languages, including
Erlang and Scala. Actor support is also available through popular libraries such as Akka, which is
available for various programming languages. In Python, Java, and C/C++, actors can be easily
emulated using threads and synchronized queues (aka blocking queues) for messaging. Each thread
would have one such queue for receiving messages. Dequeuing from an empty synchronized queue
blocks the thread until another thread enqueues a message on the queue.

The synch library supports a synchronized message queue, similar to the Queue object in Python.
Its interface is as follows:

� Queue() returns an empty queue;

Figure 20.1: Depiction of three actors. The producer does not receive messages.

120

1 import synch
2

3 const NCLIENTS = 3
4

5 server queue = synch.Queue()
6

7 def server():
8 var counter = 0
9 while True:

10 let q = synch.get(?server queue): # await request
11 synch.put(q, counter) # send response
12 counter += 1
13

14 spawn eternal server()
15

16 sequential done
17 done = [False,] * NCLIENTS

18

19 def client(client queue):
20 synch.put(?server queue, client queue) # send request
21 let response = synch.get(client queue): # await response
22 done[response] = True
23 await all(done)
24

25 alice queue = synch.Queue()
26 spawn client(?alice queue)
27 bob queue = synch.Queue()
28 spawn client(?bob queue)
29 charlie queue = synch.Queue()
30 spawn client(?charlie queue)

Figure 20.2: [code/counter.hny] An illustration of the actor approach

121

https://harmony.cs.cornell.edu/code/counter.hny

� put(q, item) adds item to the queue pointed to by q ;

� get(q) waits for and returns an item on the queue pointed to by q.

For those familiar with counting semaphores: note that a Queue behaves much like a zero-
initialized counting semaphore. put is much like V, except that it is accompanied by data. get

is much like P, except that it also returns data. Thus, synchronized queues can be considered a
generalization of counting semaphores.

Figure 20.2 illustrates the actor approach. There are three client threads that each want to be
assigned a unique identifier from the set { 0, 1, 2 }. Normally one would use a shared 0-initialized
counter and a lock. Each client would acquire the lock, get the value of the counter and increment
it, and release the lock. Instead, in the actor approach the counter is managed by a separate
server thread. The server never terminates, so it is spawned with the keyword eternal to suppress
non-terminating state warnings. Each client sends a request to the server, consisting in this case
of simply the queue to which the server must send the response. The server maintains a local,
zero-initialized counter variable. Upon receiving a request, it returns a response with the value of
the counter and increments the counter. No lock is required.

This illustration is an example of the client/server model. Here a single actor implements some
service, and clients send request messages and receive response messages. The model is particularly
popular in distributed systems, where each actor runs on a separate machine and the queues are
message channels. For example, the server can be a web server, and its clients are web browsers.

Exercises

20.1 Actors and message queues are good for building pipelines. Develop a pipeline that computes
Mersenne primes (primes that are one less than a power of two). Write four actors:

1. an actor that generates a sequence of integers 1 through N;

2. an actor that receives integers and forwards only those that are prime;

3. an actor that receives integers and forwards only those that are one less than a power of two;

4. an actor that receives integers but otherwise ignores them.

Configure two versions of the pipeline, one that first checks if a number is prime and then if it is
one less than a power of two, the other in the opposite order. Which do you think is better?

122

Chapter 21

Barrier Synchronization

Barrier synchronization is a problem that comes up in high-performance parallel computing.
The Harmony model checker uses it. A barrier is almost the opposite of a critical section: the
intention is to get a group of threads to run some code at the same time, instead of having them
execute it one at a time. More precisely, with barrier synchronization, the threads execute in rounds.
Between each round, there is a so-called barrier where threads wait until all threads have completed
the previous round and reached the barrier—before they start the next round. For example, in an
iterative matrix algorithm, the matrix may be cut up into fragments. During a round, the threads
run concurrently, one for each fragment. The next round is not allowed to start until all threads
have completed processing their fragment.

A barrier is used as follows:

� b = Barrier(n): initialize a barrier b for a collection of n threads;

� bwait(?b): wait until all threads have reached the barrier

Figure 21.1 is a test program for barriers. It uses an integer array round with one entry per
thread. Each thread, in a loop, waits for all threads to get to the barrier before incrementing its
round number. If the barrier works as advertised, two threads should never be more than one round
apart.

When implementing a barrier, a complication to worry about is that a barrier can be used over
and over again. If this were not the case, then a solution based on a lock, a condition variable, and
a counter initialized to the number of threads could be used. The threads would decrement the
counter and wait on the condition variable until the counter reaches 0.

Figure 21.2 shows how one might implement a reusable barrier. Besides a counter .left that
counts how many threads still have to reach the barrier, it uses a counter .cycle that is incremented
after each use of the barrier—to deal with the complication above. The last thread that reaches the
barrier restores .left to the number of threads (.required) and increments the cycle counter. The
other threads are waiting for the cycle counter to be incremented. The cycle counter is allowed to
wrap around—in fact, a single bit suffices for the counter.

A common design pattern with barriers in parallel programs, demonstrated in Figure 21.3, is
to use the barrier twice in each round. Before a round starts, one of the threads—let’s call it
the coordinator—sets up the work that needs to be done while the other threads wait. Then all

123

1 import barrier
2

3 const NTHREADS = 3
4 const NROUNDS = 4
5

6 round = [0,] * NTHREADS

7 invariant (max(round) – min(round)) <= 1
8

9 barr = barrier.Barrier(NTHREADS)
10

11 def thread(self):
12 for r in {0..NROUNDS–1}:
13 barrier.bwait(?barr)
14 round [self] += 1
15

16 for i in {0..NTHREADS–1}:
17 spawn thread(i)

Figure 21.1: [code/barrier test1.hny] Test program for Figure 21.2

1 from synch import *
2

3 def Barrier(required) returns barrier:
4 barrier = {
5 .mutex : Lock(), .cond : Condition(),
6 .required : required, .left : required, .cycle: 0
7 }
8

9 def bwait(b):
10 acquire(?b→mutex)
11 b→left –= 1
12 if b→left == 0:
13 b→cycle = (b→cycle + 1) % 2
14 b→left = b→required
15 notifyAll(?b→cond)
16 else:
17 let cycle = b→cycle:
18 while b→cycle == cycle:
19 wait(?b→cond, ?b→mutex)
20 release(?b→mutex)

Figure 21.2: [code/barrier.hny] Barrier implementation

124

https://harmony.cs.cornell.edu/code/barrier_test1.hny
https://harmony.cs.cornell.edu/code/barrier.hny

1 import barrier
2

3 const NTHREADS = 3
4 const NROUNDS = 4
5

6 round = [0,] * NTHREADS

7 invariant (max(round) – min(round)) <= 1
8

9 phase = 0
10 barr = barrier.Barrier(NTHREADS)
11

12 def thread(self):
13 for r in {0..NROUNDS–1}:
14 if self == 0: # coordinator prepares
15 phase += 1
16 barrier.bwait(?barr) # enter parallel work
17 round [self] += 1
18 assert round [self] == phase
19 barrier.bwait(?barr) # exit parallel work
20

21 for i in {0..NTHREADS–1}:
22 spawn thread(i)

Figure 21.3: [code/barrier test2.hny] Demonstrating the double-barrier pattern

125

https://harmony.cs.cornell.edu/code/barrier_test2.hny

1 from barrier import *
2

3 const N = 5 # size of list to be sorted
4

5 list = [choose({ 1 .. N }) for i in { 1 .. N }]
6

7 finally all(list [i–1] <= list [i] for i in { 1 .. N – 1 })
8

9 const NTHREADS = N / 2
10 bar = Barrier(NTHREADS)
11 count = 0 # to detect termination
12

13 def fetch and increment(p): # atomic increment
14 atomically !p += 1
15

16 def sorter(i):
17 var sorted = False
18 var oldcount = 0
19 while not sorted:
20 # Even phase
21 if list [i – 1] > list [i]:
22 list [i – 1], list [i] = list [i], list [i – 1]
23 fetch and increment(?count)
24

25 bwait(?bar)
26

27 # Odd phase
28 if (i < (N – 1)) and (list [i] > list [i + 1]):
29 list [i], list [i + 1] = list [i + 1], list [i]
30 fetch and increment(?count)
31

32 bwait(?bar)
33

34 # Sorted if nobody swapped anything
35 sorted = count == oldcount
36 oldcount = count
37

38 bwait(?bar)
39

40 for k in { 0 .. NTHREADS – 1 }:
41 spawn sorter((2*k) + 1)

Figure 21.4: [code/bsort.hny] Parallel bubble sort

126

https://harmony.cs.cornell.edu/code/bsort.hny

threads do the work and go on until they reach a second barrier. The second barrier is used so the
coordinator can wait for all threads to be done before setting up the work for the next round.

Figure 21.4 shows an implementation of a parallel sorting algorithm based on bubblesort. The
threads (one for every two elements) go through three phases. In the first phase, the threads swap
entries 0 and 1, 2 and 3, ... as needed. In the second phase, they swap entries 1 and 2, 3 and 4, ...
as needed. Finally, they check if any elements were swapped. If so, they repeat the phases.

Exercises

21.1 Implement barrier synchronization for N threads with just three binary semaphores. Busy
waiting is not allowed. Can you implement barrier synchronization with two binary semaphores?
(As always, the Little Book of Semaphores [Dow09] is a good resource for solving synchronization
problems with semaphores. Look for the double turnstile solution.)

21.2 Imagine a pool hall with N tables. A table is full from the time there are two players until
both players have left. When someone arrives, they can join a table that is not full, preferably one
that has a player ready to start playing. Implement a simulation of such a pool hall.

127

Chapter 22

Example: A Concurrent File
Service

This chapter presents a concurrent file service to illustrate many of the techniques we have discussed
inside a single example. We will cover the specification of such a service as well as that of a disk, and
show how the specification can be implemented on top of the disk. The file service implementation
will use a collection of worker threads synchronizing using both ordinary locks and reader/writer
locks. Clients of the file service implementation (threads themselves) use blocking synchronized
queues to communicate with the workers. The example will also illustrate modular model checking,
as the disk, the locks, and the queues are only specified.

In practice, there are many aspects to a file system. We will focus here on a low-level notion
of a file, where the file abstraction is identified by a number (the so-called “inode number” or ino)
and consists of a sequence of fixed-sized blocks. In our abstraction, each block holds an arbitrary
Harmony value. If you want to remain more truthful to reality, you might only store lists of numbers
of fixed length in a block, representing a block of bytes. A more complete file system would keep
track of various additional information about each file, such as its size in bytes, its owner, its access
rights, and when the file was last modified. Moreover, a system of folders (aka directories) built on
top of the files would associate user-readable names to the files.

Figure 22.1 shows the file system interface. Just like in Unix-like file systems, you have to specify
the (maximum) number of files when you initialize the file system. File(n) returns a handle that
must be passed to file operations, where n is the maximum number of files. For our example, we
have only included three operations on files. getsize(fs, ino) returns the size (in blocks) of the file
identified by inode number ino. read(fs, ino, offset) returns the block of file ino at the given offset,
or None if nothing has been stored at that offset. write(fs, ino, offset, data) stores data at the
given offset in file ino. If needed, the file is grown to include the given offset. “Holes” (unwritten
blocks) are plugged with None values.

Figure 22.2 shows how the file system may be tested and illustrates how the file system interface
is used. As shown in Chapter 13, we can test a concurrent system by checking all interleavings
of some selection of its operations. We can do this for both the specification and implementation
of the file system and check that every behavior of the implementation is also a behavior of the
specification.

128

1 from alloc import malloc
2

3 def File(n files) returns fs:
4 fs = malloc([[],] * n files)
5

6 def getsize(fs, ino) returns size:
7 atomically size = len (!fs)[ino]
8

9 def read(fs, ino, offset) returns data:
10 atomically data = (!fs)[ino][offset] if 0 <= offset < len (!fs)[ino] else None
11

12 def write(fs, ino, offset, data):
13 atomically:
14 let n = len (!fs)[ino]:
15 if 0 <= offset <= n:
16 (!fs)[ino][offset] = data
17 else:
18 (!fs)[ino] += ([None,] * (offset – n)) + [data,]

Figure 22.1: [code/file.hny] Specification of the file system

To store the file system, we will use a disk. Like a file, a disk is an array of blocks, albeit one
of fixed length. Figure 22.3 specifies a disk. The interface is similar to that of files, except that
there are no inode numbers. Each block is identified by its offset or block number. For example,
disk read(disk, bno) retrieves the value of block bno on the given disk. Note that operations are not
atomic. For example, two threads concurrently writing the same block can result in chaos. It is up
to the file system implementation that this does not happen. Of course, more than one thread can
read the same block at the same time. This is only a specification of a disk—an implementation may
want to include a cache of blocks for good performance. Certain operations may also be re-ordered
to further improve performance.

For the implementation, we will use a simplified Unix file system. In a Unix file system, the
disk is subdivided into four parts (Figure 22.4(a)):

1. The superblock, at offset 0.

2. An array of b bitmap blocks with one bit per block to keep track of which blocks are allocated
and which are free.

3. An array of fixed-sized inodes, stored in a range of m disk blocks starting at block 1 + b. An
inode number indexes into this array. Each inode maintains some information about a file,
including about where to find the data.

4. The remaining blocks, starting at offset 1 + b+m, which will either store data, metadata, or
be free. Metadata blocks contain a list of block numbers.

The superblock specifies the number of bitmap blocks and the number of inode blocks.

129

https://harmony.cs.cornell.edu/code/file.hny

1 from file import *
2

3 const N FILES = 2
4 const MAX FILE SIZE = 2
5

6 const N READ = 1
7 const N WRITE = 1
8 const N GETSIZE = 1
9

10 system = File(N FILES)
11

12 def getsize test(i):
13 let ino = choose { 0 .. N FILES – 1 }:
14 print(i, "getsize", ino)
15 let size = getsize(system, ino):
16 print(i, "getsize done", ino, size)
17

18 def read test(i):
19 let ino = choose { 0 .. N FILES – 1 }
20 let offset = choose { 0 .. MAX FILE SIZE – 1 }:
21 print(i, "read", ino, offset)
22 let data = read(system, ino, offset):
23 print(i, "read done", ino, offset, data)
24

25 def write test(i):
26 let ino = choose { 0 .. N FILES – 1 }
27 let offset = choose { 0 .. MAX FILE SIZE – 1 }:
28 print(i, "write", ino, offset)
29 write(system, ino, offset, i)
30 print(i, "write done", ino, offset)
31

32 for i in { 1 .. N GETSIZE }:
33 spawn getsize test(i)
34 for i in { 1 .. N READ }:
35 spawn read test(i)
36 for i in { 1 .. N WRITE }:
37 spawn write test(i)

Figure 22.2: [code/file btest.hny] Test program for a concurrent file system

130

https://harmony.cs.cornell.edu/code/file_btest.hny

1 from alloc import malloc
2

3 const BITS PER BLOCK = 4
4

5 def new(n blocks) returns disk:
6 disk = malloc([None,] * n blocks)
7

8 def getsize(disk) returns size:
9 size = len !disk

10

11 def read(disk, bno) returns block :
12 block = (!disk)[bno]
13

14 def write(disk, bno, block):
15 (!disk)[bno] = block

Figure 22.3: [code/disk.hny] Specification of a disk

Figure 22.4: The file system data structure: (a) disk layout (1 superblock, n blocks, b bitmap
blocks, m inode blocks, 4 inodes per block); (b) inode for a file with 3 data blocks

131

https://harmony.cs.cornell.edu/code/disk.hny

3 from synch import * # shared queue for file server and lock for superblock
4 from rwlock import * # read/write locks for inode blocks
5 from alloc import * # malloc/free
6 from list import subseq # list slicing
7 import disk # disk interface
8 import wal # write−ahead−log
9

10 const N BLOCKS = 10 # total number of disk blocks
11 const INODES PER BLOCK = 2 # number of inodes that fit in a block
12 const INDIR PER BLOCK = 4 # number of block pointers per block

Figure 22.5: [code/file inode.hny] File system implementation preamble

In this simplified file system, each inode contains just three pieces of information about the file
(Figure 22.4(b)): the size of the file in blocks, the block number of the first data block, and the
block number of an indirect block—a metadata block that contains block numbers of additional
data blocks. Any block number may be None to indicate a hole in the file (unused blocks). Note
that a Unix file is essentially implemented as a tree of blocks.

A bitmap keeps track of the free blocks. The bitmap may be larger than what fits in a block
and therefore must also be partitioned, just like the inode table.

Note that the entire file system data structure is essentially a tree of blocks, with the superblock
acting as the root of the tree. The superblock points to the bitmap blocks and the inode blocks. The
bitmap blocks point to the free blocks and the inode blocks point to the blocks that are allocated.
An invariant of the data structure is that all blocks are in the tree and each block (except for the
superblock) is pointed to exactly once. The invariant may not hold while the data structure is
being updated. For example, temporarily a block may be marked as free in the bitmap but also be
part of an inode.

Figure 22.5 shows the modules that the file system implementation will use and some constants.
The implementation uses the actor model (Chapter 20)—the synchmodule provides blocking multi-
reader/multi-writer queues that the actors will use for messaging. The file server itself is imple-
mented as a multithreaded actor. The threads synchronize using a plain lock for the bitmap and
reader/writer locks for each of the inode blocks. N BLOCKS specifies the size of the disk to be used
in blocks. INODES PER BLOCK specifies how many inodes fit in an inode block. INDIR PER BLOCK

specifies how many block numbers fit in a metadata block. Note that the maximum file size is this
simplified file system is 1 + INDIR PER BLOCK blocks. In a more realistic Unix file system, indirect
blocks can point to other indirect blocks, allowing for much larger files. N WORKERS specifies the
number of worker threads or actors.

Figure 22.6 shows the implementation of the file system interface, which is the same interface
as the specification (Figure 22.1) but a different implementation. File), instead of returning an
object containing an array of files, returns an object containing a queue to communicate with the file
system worker threads. The first argument is the maximum number of files. The number of inode
blocks can be computed from the number of files by dividing by INODES PER BLOCK and rounding

132

https://harmony.cs.cornell.edu/code/file_inode.hny

153 def File(n files) returns req q :
154 req q = malloc(Queue())
155 let n inode blocks = (n files + (INODES PER BLOCK – 1)) / INODES PER BLOCK

156 let n workers = 2
157 let d = disk.new(N BLOCKS)
158 let n bitmap blocks = (N BLOCKS + (disk.BITS PER BLOCK – 1)) /
159 disk.BITS PER BLOCK:
160 # Initialize the file system on disk
161 fs init(d, n bitmap blocks, n inode blocks)
162

163 # Allocate the in−memory shared state of the file server
164 let fs state = malloc({
165 .disk : d, .req q : req q, .bitmap lock : Lock(),
166 .n bitmap blocks: n bitmap blocks,
167 .n inode blocks: n inode blocks,
168 .bitmap: [i <= (1 + n bitmap blocks + n inode blocks)
169 for i in { 0 .. N BLOCKS – 1 }],
170 .ib locks: [RWlock(),] * n inode blocks }):
171

172 # Start worker threads to handle client requests
173 for i in { 1 .. n workers }:
174 spawn eternal fs worker(fs state)
175

176 def getsize(req q, ino) returns size:
177 let res q = malloc(Queue()):
178 put(req q, { .type: "getsize", .ino: ino, .q : res q })
179 size = get(res q)
180 free(res q)
181

182 def read(req q, ino, offset) returns data:
183 let res q = malloc(Queue()):
184 put(req q, { .type: "read", .ino: ino, .offset : offset, .q : res q })
185 data = get(res q)
186 free(res q)
187

188 def write(req q, ino, offset, data):
189 let res q = malloc(Queue()):
190 put(req q, { .type: "write", .ino: ino, .offset : offset, .data: data, .q : res q })
191 let status = get(res q):
192 assert status == "ok"
193 free(res q)

Figure 22.6: [code/file inode.hny] File system interface implementation

133

https://harmony.cs.cornell.edu/code/file_inode.hny

135 # A worker thread handles client requests
136 def fs worker(fs state):
137 while True:
138 let req = get(fs state→req q)
139 let ib = req.ino / INODES PER BLOCK:
140 if req.type == "write":
141 write acquire(?fs state→ib locks[ib])
142 fs update request(fs state, req, ib)
143 write release(?fs state→ib locks[ib])
144 put(req.q, "ok")
145 else:
146 read acquire(?fs state→ib locks[ib])
147 let response = fs query request(fs state, req, ib):
148 read release(?fs state→ib locks[ib])
149 put(req.q, response)

Figure 22.7: [code/file inode.hny] File server and worker threads

up. The function also initializes a disk object using fs init and then allocates some shared state
to be used by the worker threads. The shared state includes the following information:

� .disk : points to the disk object;

� .req q : the shared queue on which requests from clients arrive;

� .bitmap: an in-memory copy of the bitmap;

� .bitmap lock : a lock on the in-memory bitmap;

� .ib locks: an array of reader/writer locks, one for each inode block.

Finally, File() spawns the fs worker() threads that will handle requests.
The remaining interfaces simply put a request on the request queue and wait for a response

on another queue res q that is allocated just for this purpose. Note that the request queue has
concurrent producers (the clients) and concurrent consumers (the worker threads). The response
queues are single use only and have a single producer (a worker thread) and a single consumer (the
client).

Each worker thread executes an infinite loop, obtaining client requests and handling them. Each
request is for a particular inode. The worker first determines which inode block needs to be locked.
Depending on the request, it obtains either a read lock or a write lock on the block. In practice,
files are read much more frequently than written, so reader/writer locks can significantly improve
the potential for concurrent access compared to regular locks. The requests themselves are handled
in the fs query request() and fs update request() methods, which we will describe below.

Figure 22.8 shows how the disk is initialized with a fresh file system. The superblock is first
initialized with the number of inode blocks and a bitmap where all blocks are free. Next, the inode
blocks are initialized, each with an empty file.

134

https://harmony.cs.cornell.edu/code/file_inode.hny

42 # Initialize the file system by writing the superblock, the bitmap blocks, and
43 # the i−node blocks,
44 def fs init(d, n bitmap blocks, n inode blocks):
45 # Initialize the superblock
46 disk.write(d, 0,
47 { .n bitmap block : n bitmap blocks, .n inode blocks: n inode blocks })
48

49 # Initialize the bitmap blocks
50 for bno in { 1 .. n bitmap blocks }:
51 disk.write(d, bno, [False,] * disk.BITS PER BLOCK)
52

53 # Initialize the i−node blocks
54 for i in { 1 .. n inode blocks }:
55 disk.write(d, n bitmap blocks + i, [
56 { .direct : None, .indir : None, .size: 0 },] * INODES PER BLOCK)

Figure 22.8: [code/file inode.hny] File system initialization

Figure 22.9 contains the code for allocating blocks. The method first acquires the bitmap lock
and then scans the bitmap for a free blocks. Block allocation (and release) can be made much more
efficient if each worker thread maintained a small cache of free blocks that it can allocate from
without having to coordinate with the other workers.

Figure 22.10 shows the code for read-only operations on files, which are currently only (1)
getting the size of a file and (2) reading a block from a file. In both cases, you first need to read the
block that contains the inode. Argument ib contains the inode block number, which is computed
by dividing the inode number by INODES PER BLOCK and adding 1 (because the first inode block is
block 1). To get the index of the inode in the block, you need to compute the remainder of that
division. The getsize request is then trivial as the size is in the inode. Handling of a read request
depends on the offset. If the offset is 0, then the request tries to access the data that is in the direct
block. Otherwise, it is necessary to read the indirect block first. In any block number is None
along the way, the response should be None.

Finally, Figure 22.11 contains the code to write to a file. Again, the operation depends on the
offset. It also depends on whether an existing block is being overwritten or whether a new one must
be allocated. In some cases, an indirect block must be allocated as well. Thus, in general, multiple
blocks may need to be updated. A danger is that the file system may crash (say, due to a power
failure) and only update some of the blocks, leaving the file system inconsistent.

To overcome this problem, the file system uses a Write-Ahead Log (WAL) layered over the disk
interface. Figure 22.12 shows the specification. In particular, wal update takes as argument a
disk, a set of numbers identifying blocks that have been allocated, and a set of (block number, new
contents) pairs that describe what blocks must be written. wal update ensures that either all of
the disk updates succeed, or none of them. It does this by first logging idempotent updates in a
separate log using a checksum, and then replaying the updates in the log after a crash. An update is
idempotent if the effect of executing it multiple times is the same as executing it once. For example,

135

https://harmony.cs.cornell.edu/code/file_inode.hny

16 # The file system consists of a superblock, an array of bitmap blocks
17 # (to track the free blocks), an array of inode blocks, and the
18 # remaining blocks. The remaining blocks are dynamic and can be of
19 # the following types:
20 # − free: not in use (marked False in the bitmap blocks)
21 # − data: a data block
22 # − indir: an indirect block, with pointers to other blocks
23 # An inode has a pointer to a direct block and a pointer to an indirect block,
24 # so the maximum file size is 1 + INDIR PER BLOCK.
25

26 # Allocate a disk block. Currently uses first available strategy,
27 # which is not very efficient but easy. Note, this does not update the
28 # bitmap on disk, which is done through the WAL.
29 def fs alloc(fs state) returns bno:
30 acquire(?fs state→bitmap lock)
31 bno = fs state→n bitmap blocks + fs state→n inode blocks
32 var found = False
33 while not found :
34 bno += 1
35 assert bno < N BLOCKS

36 found = not fs state→bitmap[bno]
37 fs state→bitmap[bno] = True
38 release(?fs state→bitmap lock)

Figure 22.9: [code/file inode.hny] File system bitmap maintenance

136

https://harmony.cs.cornell.edu/code/file_inode.hny

60 # Handle a read−only request. A read lock on i−node block ib has been acquired.
61 def fs query request(fs state, req, ib) returns result :
62 # Read the inode block and extract the inode
63 let inode block = wal.read(fs state→disk, 1 + fs state→n bitmap blocks + ib)
64 let inode = inode block [req.ino % INODES PER BLOCK]:
65 if req.type == "getsize":
66 result = inode.size
67 else:
68 assert req.type == "read"
69

70 # Read the direct block. Return None if there is no direct block.
71 if req.offset == 0:
72 if inode.direct == None:
73 result = None
74 else:
75 result = wal.read(fs state→disk, inode.direct)
76

77 # Read indirectly. If there is no indirect block return None
78 elif inode.indir == None:
79 result = None
80

81 # Read the indirect block and get the pointer to the data block,
82 # which may be None.
83 else:
84 let indir = wal.read(fs state→disk, inode.indir):
85 if indir [req.offset – 1] == None:
86 result = None
87 else:
88 result = wal.read(fs state→disk, indir [req.offset – 1])

Figure 22.10: [code/file inode.hny] Handling of read-only file requests

137

https://harmony.cs.cornell.edu/code/file_inode.hny

92 # Handle a write request. A write lock on i−node block ib has been acquired.
93 def fs update request(fs state, req, ib):
94 assert req.type == "write"
95 var allocated = {} # set of allocated blocks (on disk bitmap not yet updated)
96 var write set = {} # set of (block number, data) pairs to be written
97 var inode block = wal.read(fs state→disk, 1 + fs state→n bitmap blocks + ib)
98 var inode = inode block [req.ino % INODES PER BLOCK]
99

100 if req.offset == 0:
101 if inode.direct == None:
102 inode.direct = fs alloc(fs state)
103 allocated |= { inode.direct }
104 inode.size = max(inode.size, 1)
105 inode block [req.ino % INODES PER BLOCK] = inode
106 write set |= { (1 + fs state→n bitmap blocks + ib, inode block) }
107 write set |= { (inode.direct, req.data) }
108 else:
109 if inode.indir == None:
110 inode.indir = fs alloc(fs state)
111 allocated |= { inode.indir }
112 inode.size = max(inode.size, req.offset + 1)
113 inode block [req.ino % INODES PER BLOCK] = inode
114 write set |= { (1 + fs state→n bitmap blocks + ib, inode block) }
115 let bno = fs alloc(fs state)
116 let indir = [bno if i == (req.offset – 1) else None
117 for i in { 0 .. INODES PER BLOCK – 1 }]:
118 allocated |= { bno }
119 write set |= { (bno, req.data), (inode.indir, indir) }
120 else:
121 var indir = wal.read(fs state→disk, inode.indir)
122 if indir [req.offset – 1] == None:
123 indir [req.offset – 1] = fs alloc(fs state)
124 allocated |= { indir [req.offset – 1] }
125 write set |= { (inode.indir, indir) }
126 write set |= { (indir [req.offset – 1], req.data) }
127 if inode.size <= req.offset :
128 inode.size = req.offset + 1
129 inode block [req.ino % INODES PER BLOCK] = inode
130 write set |= { (1 + fs state→n bitmap blocks + ib, inode block) }
131 wal.update(fs state→disk, allocated, write set)

Figure 22.11: [code/file inode.hny] Handling of write requests

138

https://harmony.cs.cornell.edu/code/file_inode.hny

1 import disk
2

3 # Read a block from the disk
4 def read(d, bno) returns block :
5 block = disk.read(d, bno)
6

7 # All−or−nothing update of the disk
8 # allocated is a set of block numbers that were allocated.
9 # write write is a set of (block number, data) pairs.

10 def update(d, allocated, write set):
11 for alloc in allocated :
12 let bno = alloc / disk.BITS PER BLOCK

13 let off = alloc % disk.BITS PER BLOCK:
14 var blk = disk.read(d, 1 + bno)
15 assert not blk [off]
16 blk [off] = True
17 disk.write(d, 1 + bno, blk)
18 for bno, data in write set :
19 disk.write(d, bno, data)

Figure 22.12: [code/wal.hny] Specification of a Write Ahead Log

writing data to a disk block is idempotent. Here we do not show how the WAL may be implemented
in practice. Note that wal update is aware of the on-disk bitmap. Also note that wal update is
not atomic. Concurrent wal update operations on the same blocks could cause chaos. However,
the file system’s locks will prevent this.

Method fs update request deals with update requests. It saves up any disk updated operations
in the variables allocated and write set, which are committed to disk using wal update only when all
disk update operations are known. Like fs query request, the implementation considers various
cases. First it checks if the direct block is updated or an indirect block. If it is the direct block, it
checks to see if it has already been allocated. Otherwise it needs to check if the indirect block has
already been allocated as well as the data block. Data blocks, indirect blocks, and even the inode
block may all have to be updated as part of this operation.

139

https://harmony.cs.cornell.edu/code/wal.hny

Chapter 23

Interrupts

Threads can be interrupted. An interrupt is a notification of some event such as a keystroke, a
timer expiring, the reception of a network packet, the completion of a disk operation, and so on.
We distinguish interrupts and exceptions. An exception is caused by the thread executing an invalid
machine instruction such as divide-by-zero. An interrupt is caused by some peripheral device and
can be handled in Harmony. In other words: an interrupt is a notification, while an exception is an
error.

Harmony allows modeling interrupts using the trap statement:

trap handler argument

invokes handler argument at some later, unspecified time. Thus you can think of trap as
setting a timer. Only one of these asynchronous events can be outstanding at a time; a new call
to trap overwrites any outstanding one. Figure 23.1 gives an example of how trap might be used.
Here, the main() thread loops until the interrupt has occurred and the done flag has been set. After
this, count must equal 1.

But now consider Figure 23.2. The difference with Figure 23.1 is that both the main() and
handler() methods increment count. This is not unlike the example we gave in Figure 3.3, except
that only a single thread is involved now. And, indeed, it suffers from a similar race condition;
run it through Harmony to see for yourself. If the interrupt occurs after main() reads count (and
thus still has value 0) but before main() writes the updated value 1, then the interrupt handler will
also read value 0 and write value 1. We say that the code in Figure 23.2 is not interrupt-safe (as
opposed to not being thread-safe).

You would be excused if you wanted to solve the problem using locks, similar to Figure 8.3.
Figure 23.3 shows how one might go about this. But locks are intended to solve synchronization
issues between multiple threads. But an interrupt handler is not run by another thread—it is run
by the same thread that experienced the interrupt. If you run the code through Harmony, you will
find that the code may not terminate. The issue is that a thread can only acquire a lock once. If
the interrupt happens after main() acquires the lock but before main() releases it, the handler()
method will block trying to acquire the lock, even though it is being acquired by the same thread
that already holds the lock.

140

1 count = 0
2 done = False
3

4 finally count == 1
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 await done
13

14 spawn main()

Figure 23.1: [code/trap.hny] How to use trap

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 count += 1
13 await done
14

15 spawn main()

Figure 23.2: [code/trap2.hny] A race condition with interrupts

141

https://harmony.cs.cornell.edu/code/trap.hny
https://harmony.cs.cornell.edu/code/trap2.hny

1 from synch import Lock, acquire, release
2

3 countlock = Lock()
4 count = 0
5 done = False
6

7 finally count == 2
8

9 def handler():
10 acquire(?countlock)
11 count += 1
12 release(?countlock)
13 done = True
14

15 def main():
16 trap handler()
17 acquire(?countlock)
18 count += 1
19 release(?countlock)
20 await done
21

22 spawn main()

Figure 23.3: [code/trap3.hny] Locks do not work with interrupts

142

https://harmony.cs.cornell.edu/code/trap3.hny

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 setintlevel(True)
13 count += 1
14 setintlevel(False)
15 await done
16

17 spawn main()

Figure 23.4: [code/trap4.hny] Disabling and enabling interrupts

Instead, the way one fixes interrupt-safety issues is through disabling interrupts temporarily. In
Harmony, this can be done by setting the interrupt level of a thread to True using the setintlevel
interface. Figure 23.4 illustrates how this is done. Note that it is not necessary to change the
interrupt level during servicing an interrupt, because it is automatically set to True upon entry
to the interrupt handler and restored to False upon exit. It is important that the main() code re-
enables interrupts after incrementing count. What would happen if main() left interrupts disabled?

setintlevel(il) sets the interrupt level to il and returns the prior interrupt level. Returning the
old level is handy when writing interrupt-safe methods that can be called from ordinary code as
well as from an interrupt handler. Figure 23.5 shows how one might write a interrupt-safe method
to increment the counter.

It will often be necessary to write code that is both interrupt-safe and thread-safe. As you might
expect, this involves both managing locks and interrupt levels. To increment count, the interrupt
level must be True and countlock must be held. Figure 23.6 gives an example of how this might be
done. One important rule to remember is that a thread should disable interrupts before attempting
to acquire a lock. Try moving acquire() to the beginning of the increment method and release()
to the end of increment and see what happens. This incorrect code can lead to threads getting
blocked indefinitely.

(Another option is to use synchronization techniques that do not use locks. See Chapter 24 for
more information.)

There is another important rule to keep in mind. Just like locks should never be held for
long, interrupts should never be disabled for long. With locks the issue is to maximize concurrent
performance. For interrupts the issue is fast response to asynchronous events. Because interrupts
may be disabled only briefly, interrupt handlers must run quickly and cannot wait for other events.

143

https://harmony.cs.cornell.edu/code/trap4.hny

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def increment():
7 let prior = setintlevel(True):
8 count += 1
9 setintlevel(prior)

10

11 def handler():
12 increment()
13 done = True
14

15 def main():
16 trap handler()
17 increment()
18 await done
19

20 spawn main()

Figure 23.5: [code/trap5.hny] Example of an interrupt-safe method

144

https://harmony.cs.cornell.edu/code/trap5.hny

1 from synch import Lock, acquire, release
2

3 count = 0
4 countlock = Lock()
5 done = [False, False]
6

7 finally count == 4
8

9 def increment():
10 let prior = setintlevel(True):
11 acquire(?countlock)
12 count += 1
13 release(?countlock)
14 setintlevel(prior)
15

16 def handler(self):
17 increment()
18 done[self] = True
19

20 def thread(self):
21 trap handler(self)
22 increment()
23 await done[self]
24

25 spawn thread(0)
26 spawn thread(1)

Figure 23.6: [code/trap6.hny] Code that is both interrupt-safe and thread-safe

145

https://harmony.cs.cornell.edu/code/trap6.hny

Exercises

23.1 The put method you implemented in Exercise 18.1 cannot be used in interrupt handlers for
two reasons: (1) it is not interrupt-safe, and (2) it may block for a long time if the buffer is full.
Yet, it would be useful if, say, a keyboard interrupt handler could place an event on a shared
queue. Implement a new method i put(item) that does not block. Instead, it should return False
if the buffer is full and True if the item was successfully enqueued. The method also needs to be
interrupt-safe.

146

Chapter 24

Non-Blocking Synchronization

So far, we have concentrated on critical sections to synchronize multiple threads. Certainly,
preventing multiple threads from accessing certain code at the same time simplifies how to think
about synchronization. However, it can lead to starvation. Even in the absence of starvation, if
some thread is slow for some reason while being in the critical section, the other threads have to
wait for it to finish executing the critical section. Also, using synchronization primitives in interrupt
handlers is tricky to get right (Chapter 23) and might be too slow. In this chapter, we will have a
look at how one can develop concurrent code in which threads do not have to wait for other threads
(or interrupt handlers) to complete their ongoing operations.

As an example, we will revisit the producer/consumer problem. The code in Figure 24.1 is
based on code developed by Herlihy and Wing [HW87]. The code is a “proof of existence” for
non-blocking synchronization; it is not necessarily practical. There are two variables. items is an
unbounded array with each entry initialized to None. back is an index into the array and points
to the next slot where a new value is inserted. The code uses two atomic operations:

� inc(p): atomically increments !p and returns the old value;

� exch(p): sets !p to None and returns the old value.

Method produce(item) uses inc(?back) to allocate the next available slot in the items array. It
stores the item as a singleton tuple. Method consume() repeatedly scans the array, up to the back
index, trying to find an item to return. To check an entry, it uses exch() to atomically remove an
item from a slot if there is one. This way, if two or more threads attempt to extract an item from
the same slot, at most one will succeed.

There is no critical section. If one thread is executing instructions very slowly, this does not
negatively impact the other threads, as it would with solutions based on critical sections. On
the contrary, it helps them because it creates less contention. Unfortunately, the solution is not
practical for the following reasons:

� The items array must be of infinite size if an unbounded number of items may be produced;

� Each slot in the array is only used once, which is inefficient;

� the inc and exch atomic operations are not universally available on existing processors.

147

1 const MAX ITEMS = 3
2

3 sequential back, items
4 back = 0
5 items = [None,] * MAX ITEMS

6

7 def inc(pcnt) returns prior :
8 atomically:
9 prior = !pcnt

10 !pcnt += 1
11

12 def exch(pv) returns prior :
13 atomically:
14 prior = !pv
15 !pv = None
16

17 def produce(item):
18 items[inc(?back)] = item
19

20 def consume() returns next :
21 next = None
22 while next == None:
23 var i = 0
24 while (i < back) and (next == None):
25 next = exch(?items[i])
26 i += 1
27

28 for i in {1..MAX ITEMS}:
29 spawn produce(i)
30 for i in {1..choose({0..MAX ITEMS})}:
31 spawn consume()

Figure 24.1: [code/hw.hny] Non-blocking queue

148

https://harmony.cs.cornell.edu/code/hw.hny

However, in the literature you can find examples of practical non-blocking (aka wait-free) synchro-
nization algorithms.

Exercises

24.1 A seqlock consists of a lock and a version number. An update operation acquires the lock,
increments the version number, makes the changes to the data structure, and then releases the lock.
A read-only operation does not use the lock. Instead, it retrieves the version number, reads the
data structure, and then checks if the version number has changed. If so, the read-only operation is
retried. Use a seqlock to implement a bank much like Exercise 19.2, with one seqlock for the entire
bank (i.e., no locks on individual accounts). Method transfer is an update operation; method
total is a read-only operation. Explain how a seqlock can lead to starvation.

149

Chapter 25

Alternating Bit Protocol

A distributed system is a concurrent system in which a collection of threads communicate by message
passing, much the same as in the actor model. The most important difference between distributed
and concurrent systems is that the former takes failures into account, including failures of threads
and failures of shared memory. In this chapter, we will consider two actors, Alice and Bob. Alice
wants to send a sequence of application messages to Bob, but the underlying network may lose
messages. The network does not re-order messages: when sending messages m1 and m2 in that
order, then if both messages are received, m1 is received before m2. Also, the network does not
create messages out of nothing: if message m is received, then message m was sent.

It is useful to create an abstract network that reliably sends messages between threads, much
like the FIFO queue in the synch module. For this, we need a network protocol that Alice and Bob
can run. In particular, it has to be the case that if Alice sends application messages m1, ...,mn in
that order, then if Bob receives an application message m, then m = mi for some i and, unless m
is the very first message, Bob will already have received application messages m1, ...,mi−1 (safety).
Also, if the network is fair and Alice sends application message m, then eventually Bob should
deliver m (liveness).

The Alternating Bit Protocol is suitable for our purposes. We assume that there are two unre-
liable network channels: one from Alice to Bob and one from Bob to Alice. Alice and Bob each
maintain a zero-initialized sequence number, s seq and r seq resp. Alice sends a network message to
Bob containing an application message as payload and Alice’s sequence number as header. When
Bob receives such a network message, Bob returns an acknowledgment to Alice, which is a network
message containing the same sequence number as in the message that Bob received.

In the protocol, Alice keeps sending the same network message until she receives an acknowl-
edgment with the same sequence number. This is called retransmission. When she receives the
desired sequence number, Alice increments her sequence number. She is now ready to send the
next message she wants to send to Bob. Bob, on the other hand, waits until he receives a message
matching Bob’s sequence number. If so, Bob delivers the payload in the message and increments
his sequence number. Because of the network properties, a one-bit sequence number suffices.

We can model each channel as a variable that either contains a network message or nothing (we
use () to represent nothing in the model). Let s chan be the channel from Alice to Bob and r chan
the channel from Bob to Alice. net send(pchan, m) models sending a message m to !pchan, where
pchan is either ?s chan or ?r chan. The method places either m (to model a successful send) or ()

150

1 def net send(pchan, msg):
2 atomically:
3 !pchan = msg if choose({ False, True }) else ()
4

5 def net recv(pchan) returns msg :
6 atomically:
7 msg = !pchan
8 !pchan = ()
9

10 def app send(net, seq, payload):
11 !seq = 1 – !seq
12 let m = { .seq : !seq, .payload : payload }:
13 var blocked = True
14 while blocked :
15 net send(?net→s chan, m)
16 let response = net recv(?net→r chan):
17 blocked = (response == ()) or (response.ack != !seq)
18

19 def app recv(net, seq) returns payload :
20 !seq = 1 – !seq
21 var blocked = True
22 while blocked :
23 let m = net recv(?net→s chan):
24 if m != ():
25 net send(?net→r chan, { .ack : m.seq })
26 if m.seq == !seq :
27 payload = m.payload
28 blocked = False

Figure 25.1: [code/abp.hny] Alternating Bit Protocol

151

https://harmony.cs.cornell.edu/code/abp.hny

1 import abp
2

3 const NMSGS = 10
4

5 invariant s seq in { 0, 1 }
6 invariant r seq in { 0, 1 }
7

8 network = { .s chan: (), .r chan: () }
9 s seq = r seq = 0

10

11 def sender():
12 for i in {1..NMSGS}:
13 abp.app send(?network, ?s seq, i)
14

15 def receiver():
16 var i = 1
17 while True:
18 let payload = abp.app recv(?network, ?r seq):
19 assert payload == i
20 i += 1
21

22 spawn sender()
23 spawn eternal receiver()

Figure 25.2: [code/abptest.hny] Test code for alternating bit protocol

152

https://harmony.cs.cornell.edu/code/abptest.hny

(to model loss) in !pchan. net recv}(pchan) models checking !pchan for the next message. If there
is a message, it sets !pchan to ().

Method app send(net, seq, msg) retransmits { .seq : !seq, .payload : msg } until an acknowledg-
ment for !seq is received. Method app recv(net, seq) returns the next successfully received message
(with the given sequence number bit) if any. Figure 25.2 shows how the methods may be used
to send and receive a stream of NMSGS messages reliably. It has to be bounded, because model
checking requires a finite model. Note that the receiver() is spawned as eternal because it does
not terminate.

Exercises

25.1 Chapter 20 explored the client/server model. It is popular in distributed systems as well.
Develop a protocol for a single client and server using the same network model as for the ABP
protocol. Hint: the response to a request can contain the same sequence number as the request.

25.2 Generalize the solution in the previous exercise to multiple clients. Each client is uniquely
identified. You may either use separate channel pairs for each client, or solve the problem using a
single pair of channels.

25.3 The alternating bit protocol is a special case of a sliding window protocol with a window
size of 1 and using 2 sequence numbers. TCP uses a sliding window protocol. Using a window
size of W , a client is able to send W messages at the same time before having to wait for an
acknowledgment, but you’ll need more than W sequence numbers to make it work. After receiving
an acknowledgment, the window can be moved up. Implement a sliding window protocol.

153

Chapter 26

Leader Election

Leader election is the problem of electing a unique leader in a network of processors. Typically this
is challenging because the processors have only limited information. In the version that we present,
each processor has a unique identifier. The processors are organized in a ring, but each processor
only knows its own identifier and the identifier of its successor on the ring. Having already looked
into the problem of how to make the network reliable, we assume here that each processor can
reliably send messages to its successor.

The protocol that we present elects as leader the processor with the highest identifier [CR79]
and works in two phases: in the first phase, each processor sends its identifier to its successor. When
a processor receives an identifier that is larger than its own identifier, it forwards that identifier to
its successor as well. If a processor receives its own identifier, it discovers that it is the leader. That
processor then starts the second phase by sending a message around the ring notifying the other
processors of the leader’s identifier.

Figure 26.1 describes the protocol and its test cases in Harmony. In Harmony, processors can be
modeled by threads and there are a variety of ways in which one can model a network using shared
variables. Here, we model the network as a set of messages. The send method atomically adds a
message to this set. Messages are tuples with three fields: (dst, id, found). dst is the identifier of the
destination processor; id is the identifier that is being forwarded; and found is a boolean indicating
the second phase of the protocol. The receive(self) method looks for all messages destined for the
processor with identifier self.

To test the protocol, the code first chooses the number of processors and generates an identifier
for each processor, chosen non-deterministically from a set of NIDS identifiers. It also keeps track
in the variable leader of what the highest identifier is, so it can later be checked.

Method processor(self, succ) is the code for a processor with identifier self and successor succ.
It starts simply by sending its own identifier to its successor. The processor then loops until it
discovers the identifier of the leader in the second phase of the protocol. A processor waits for a
message using the Harmony atomically when exists statement. This statement takes the form

atomically when exists v in s: statement block

where s is a set and v is variable that is bound to an element of s. The properties of the
statement are as follows:

154

1 const NIDS = 5 # number of identifiers
2

3 network = {} # the network is a set of messages
4 leader = 0 # used for checking correctness
5

6 def send(msg):
7 atomically network |= { msg }
8

9 def receive(self) returns msg :
10 msg = { (id, found) for (dst, id, found) in network where dst == self }
11

12 def processor(self, succ):
13 send(succ, self, False)
14 var working = True
15 while working :
16 atomically when exists (id, found) in receive(self):
17 if id == self :
18 assert self == leader

19 send(succ, id, True)
20 elif id > self :
21 assert self != leader

22 send(succ, id, found)
23 if found :
24 working = False
25

26 var ids, nprocs, procs = { 1 .. NIDS }, choose({ 1 .. NIDS }), []
27 for i in { 0 .. nprocs – 1 }:
28 let next = choose(ids):
29 ids –= { next }
30 procs += [next,]
31 if next > leader:
32 leader = next
33 for i in { 0 .. nprocs – 1 }:
34 spawn processor(procs[i], procs[(i + 1) % nprocs])

Figure 26.1: [code/leader.hny] A leader election protocol on a ring

155

https://harmony.cs.cornell.edu/code/leader.hny

� it waits until s is non-empty;

� it is executed atomically;

� v is selected non-deterministically, like in the choose operator.

If a processor receives its own identifier, it knows its the leader. The Harmony code checks this
using an assertion. In real code the processor could not do this as it does not know the identifier of
the leader, but assertions are only there to check correctness. The processor then sends a message
to its successor that the leader has been found. If the processor receives an identifier higher than its
own, the processor knows that it cannot be the leader. In that case, it simply forwards the message.
A processor stops when it receives a message that indicates that the leader has been identified.

Note that there is a lot of non-determinism in the specification, leading to a lot of executions
that must be checked. First, every possible permutation of identifiers for the processors is tried.
When there are multiple messages to receive by a processor, every possible order is tried (including
receiving the same message multiple times). Fortunately, the atomically when exists statement
is executed atomically, otherwise the body of the statement could lead to additional thread inter-
leavings. Because in practice the different processors do not share memory, it is not necessary to
check those interleavings.

Exercises

26.1 Check if the code finds a unique leader if identifiers are not unique.

26.2 Messages are added atomically to the network. Is this necessary? What happens if you
remove the atomically keyword? Explain what happens.

156

Chapter 27

Transactions and Two Phase
Commit

Modern databases support multiple clients concurrently accessing the data. They store data on
disk, but we will ignore that in this book. (If you want to model a disk, this is probably best
done as a separate thread that maintains the contents of the disk.) The complication we address
here is that databases may be sharded, where different parts of the data are stored on different
servers. The different servers may even be under different authoritive domains, such as multiple
banks maintaining the accounts of their clients.

In database terminology, a transaction is an operation on a database. The operation can be
quite complex, and the execution of a transaction should have the following two properties:

� all-or-nothing : a transaction should either complete, or it should be a no-op. It should never
partially execute and then give up because of some kind of error or something. Database
people call this atomicity, but it is not the same kind of atomicity that we have been discussing
in this book.

� serialized : any two concurrent transactions should appear to execute in some order. Database
people call this isolation: one transaction should not be able to witness the intermediate state
of another transaction in execution.

We will use as an example a distributed database that maintains bank accounts. For simplicity,
we will model this as a collection of banks, each maintaining a single account. There are two
kinds of transactions: transfer (similar to Exercise 19.2) and check. In this example, a transfer
is a transaction that moves some funds between two accounts. A check is a transaction over all
accounts and checks that the sum of the balances across the accounts remains the same.

Executing such transactions must be done with care. Consider what would happen if transac-
tions are not all-or-nothing or are not serialized. A transfer consists of two operations: withdrawing
funds from one account and depositing the same amount of funds in the other. These two operations
can be done concurrently, but if the withdrawal fails (for example, because there are not sufficient
funds in the source account) then the whole transaction should fail and become a no-op. Even if
this is not the case, a concurrent check transaction may accidentally witness a state in which either
the withdrawal or the deposit happened, but not both. And matters get more complicated with
multiple concurrent transfers.

157

2 const NBANKS = 3
3 const NCOORDS = 2
4 const MAX BALANCE = 1
5

6 network = {}
7

8 def send(msg):
9 atomically network |= { msg }

10

11 def bank(self, balance):
12 var balance = balance
13 var status, received = (), {}
14 while True:
15 atomically when exists req in network – received when req.dst == self :
16 received |= { req }
17 if req.request == "withdraw":
18 if (status != ()) or (req.amount > balance):
19 send({ .dst : req.src, .src: self, .response: "no" })
20 else:
21 status = balance
22 balance –= req.amount
23 send({ .dst : req.src, .src: self, .response: "yes", .funds: balance })
24 elif req.request == "deposit":
25 if status != ():
26 send({ .dst : req.src, .src: self, .response: "no" })
27 else:
28 status = balance
29 balance += req.amount
30 send({ .dst : req.src, .src: self, .response: "yes", .funds: balance })
31 elif req.request == "commit":
32 assert status != ()
33 status = ()
34 else:
35 assert (status != ()) and (req.request == "abort")
36 balance, status = status, ()

Figure 27.1: [code/2pc.hny] Two Phase Commit protocol: code for banks

158

https://harmony.cs.cornell.edu/code/2pc.hny

40 import list
41

42 def transfer(self, b1, b2, amt):
43 send({ .dst : b1, .src: self, .request : "withdraw", .amount : amt })
44 send({ .dst : b2, .src: self, .request : "deposit", .amount : amt })
45 atomically let msgs = { m for m in network where m.dst == self }
46 when { m.src for m in msgs } == { b1, b2 }:
47 if all(m.response == "yes" for m in msgs):
48 for m in msgs where m.response == "yes":
49 send({ .dst : m.src, .src: self, .request : "commit" })
50 else:
51 for m in msgs where m.response == "yes":
52 send({ .dst : m.src, .src: self, .request : "abort" })
53

54 def check(self, total):
55 let allbanks = { (.bank, i) for i in { 0 .. NBANKS – 1} }:
56 for b in allbanks:
57 send({ .dst : b, .src: self, .request : "withdraw", .amount : 0 })
58 atomically let msgs = { m for m in network where m.dst == self }
59 when { m.src for m in msgs } == allbanks:
60 assert all(m.response == "yes" for m in msgs) =>
61 (list.sum(m.funds for m in msgs) == total)
62 for m in msgs where m.response == "yes":
63 send({ .dst : m.src, .src: self, .request : "abort" })
64

65 let balances = [choose({ 0 .. MAX BALANCE }) for in { 0 .. NBANKS – 1}]:
66 for i in { 0 .. NBANKS – 1 }:
67 spawn eternal bank((.bank, i), balances[i])
68 for i in { 1 .. NCOORDS }:
69 if choose({ "transfer", "check" }) == .transfer :
70 let b1 = choose({ (.bank, j) for j in { 0 .. NBANKS – 1}})
71 let b2 = choose({ (.bank, j) for j in { 0 .. NBANKS – 1}} – { b1 }):
72 spawn transfer((.coord, i), b1, b2, 1)
73 else:
74 spawn check((.coord, i), list.sum(balances))

Figure 27.2: [code/2pc.hny] Two Phase Commit protocol: code for transaction coordinators

159

https://harmony.cs.cornell.edu/code/2pc.hny

The Two-Phase Commit protocol [Gra78] is a protocol that can be used to implement trans-
actions across multiple database servers—banks in this case. Each transaction has a coordinator
that sends a PREPARE message to each of the servers involved in the transaction, asking them to
prepare to commit to their part in a particular transaction. A server can either respond with YES

if it is ready to commit and will avoid doing anything that might jeopardize this (like committing
a conflicting transaction), or with NO if it does not want to participate in the transaction. If all
servers respond with YES, then the coordinator can decide to commit the transaction. Otherwise the
coordinator must decide to abort the transaction. In the second phase, the servers that responded
with YES (if any) must be notified to inform them of the coordinator’s decision.

Different transactions can have different coordinators. In our implementation, each bank and
each coordinator is a thread. Figure 27.1 shows the code for a bank. The state of a bank consists
of the following local variables:

� self : the bank’s identifier;

� balance: the current balance in the account;

� status: either contains () if the bank is not involved in an ongoing transaction or contains the
balance just before the transaction started;

� received : the set of messages received and handled so far.

Messages sent to a bank are dictionaries with the following fields:

� .dst : identifier of the bank;

� .src: identifier of the coordinator that sent the message;

� .request : request type, which is either .withdraw, .deposit, .commit, or .abort ;

� .amount : amount to withdraw or deposit.

A bank waits for a message destined to itself that it has not yet received. In case of a withdrawal
when the bank is idle and there are sufficient funds, the bank saves the current balance in status to
indicate an ongoing transaction and what its original balance was. The bank then responds with a
.yes message to the coordinator, including the new balance. Otherwise, the bank responds with a
.no message. Deposits are similar, except that it is not necessary to check for sufficient funds. In
case of a .commit message, the bank changes its status to (), indicating that there is no ongoing
transaction. In case of a .abort message, the bank restores balance first.

Figure 27.2 contains the code for transfers and inquiries, as well as tests. The receive() method
is used by coordinators in an atomically when exists statement to wait for a response from each
bank involved in a transaction. Argument self is the identifier of the coordinator and sources is
the set of banks. It returns the empty set if there not yet responses from all banks. Otherwise it
returns a singleton set containing the set of responses, one for each source.

The transfer() method contains the code for the transfer transaction. Argument self is the
identifier of the coordinator, b1 is the source bank, b2 is the destination bank, and amt is the
amount to transfer. The coordinator sends a PREPARE message containing a .withdraw request to b1
and a PREPARE message containing a .deposit request to b2. It then waits for responses from each.
If both responses are .yes, then it commits the transaction, otherwise it aborts the transaction.

160

The check() method checks if the sum of the balances equals total, the sum of the initial
balances. The code is similar to transfer, except that it always aborts the transaction—there is
no need to ever commit it. As a code-saving hack: the balance inquiry is done by withdrawing $0.

As for testing, the initial balances are picked arbitrarily between 0 and MAX BALANCE (and
Harmony as always will try every possible set of choices). Each coordinator chooses whether to
do a transfer or a check. In case of a transfer, it also chooses the source bank and the destination
bank.

While the protocol perhaps seems simple enough, there are a lot of if statements in the code,
making it hard to reason about correctness. Model checking is useful to see if there are corner cases
where the code does not work. While confidence increases by increasing the number of banks or
the number of coordinators, doing so quickly increases the number of possible states so that model
checking may become infeasible.

Exercises

27.1 In Exercise 19.2 the code ran into a deadlock. Can the code in this chapter run into a
deadlock? Explain.

27.2 Transactions can fail for two reasons: a transfer transaction can fail because of insufficient
funds, but in general transaction can fail if there is a conflict with another transaction. The latter
can be fixed by retrying the transaction until it commits. Implement this.

27.3 One way to reduce the number of conflicts between transactions is to distinguish read and
write operations. Two read operations (in our case, operations that withdraw $0 do not conflict,
so a bank could have multiple ongoing read operations for different transactions. Implement this.

27.4 Two-phase commit can tolerate servers failing. If a server does not respond within some
reasonable amount of time, the coordinator can abort the transaction. Implement this.

161

Chapter 28

Chain Replication

As you have probably experienced, computers can crash. If you are running a web service, you may
not be able to afford a long outage. If you are running software that flies a plane, then an outage
for any length of time could lead to a disaster. To deal with service outages caused by computers
crashing, you may want to replicate the service onto multiple computers. As long as one of the
computers survives, the service remains available.

Besides availability, it is usually important that the replicated service acts as if it were a single
one. This requires that the replicas of the service coordinate their actions. The Replicated State
Machine Approach [Lam78, Sch90] is a general approach to do just this. First, you model your
service as a deterministic state machine. The replicas each run a copy of the state machine, started
in the same state. As long as the replicas handle the same inputs in the same order, determinism
guarantees that they produce the same outputs in the same order.

Figure 28.1 presents a Harmony specification of state machine replication. We model the state
machine as a history : a sequence of operations. In a replicated state machine, the abstract network
maintains this history as an ordered queue of messages. NOPS clients each place an operation on
the network. The replicas process messages from the ordered network.

All but one of the replicas is allowed to crash. Crashes are modeled as interrupts, so we use
Harmony’s trap clause to schedule one. When crashing, a replica simply stops. The model chooses
one of the replicas that is not allowed to crash. Of course, a replica does not know whether it is
immortal or not in practice—it should just assume that it is. The immortality of one of the replicas
is only used for modeling the assumptions we make about the system.

The behavior is captured as before. Before an operation is added to the network, a client prints
the operation (in this case, its own identifier). After a replica processes an operation, it prints a
pair consisting of its own identifier and the operation. All replicas print the same operations in the
same order until they crash. Figure 28.2 shows the allowed behaviors in case there are just two
clients and two replicas. Because one of the replicas is immortal and clients do not crash, at least
one of the replicas will print both operations (liveness). If both do, they do so in the same order
(safety).

But in reality the network is not an ordered queue and better modeled as a set of messages. The
trick now is to ensure that all replicas handle the same requests in the same order and to do so in a
way that continues to work even if some strict subset of replicas crash. Chain Replication [vRS04]
is such a replication protocol. In Chain Replication, the replicas are organized in a linear chain

162

1 const NREPLICAS = 3 # number of replicas
2 const NOPS = 2 # number of operations
3

4 network = [] # the network is a queue of messages
5

6 def crash():
7 stop()
8

9 def send(msg):
10 atomically network += [msg,]
11

12 def replica(self, immortal):
13 if not immortal :
14 trap crash()
15 var delivered = 0
16 while True:
17 atomically when len(network) > delivered :
18 let msg = network [delivered]:
19 print(self, msg)
20 delivered += 1
21

22 def client(self):
23 print(self)
24 send(self)
25

26 let immortal = choose {1..NREPLICAS}:
27 for i in {1..NREPLICAS}:
28 spawn eternal replica(i, i == immortal)
29 for i in {1..NOPS}:
30 spawn client(i)

Figure 28.1: [code/rsm.hny] Replicated State Machine

163

https://harmony.cs.cornell.edu/code/rsm.hny

Figure 28.2: The DFA generated by Figure 28.1 when NOPS=2 and NREPLICAS=2

which may change as replicas crash. Importantly, at any point in time there is only one head and
one tail replica.

Only the head is allowed to accept new operations from clients. When it does so, it adds the
operation to the end of its history and sends the history to its successor on the chain. When the
direct successor receives such a history, it makes sure that the history is an extension of its own and,
if so, replaces its own history with the one received. It then sends the history on to its successor,
if any. When an operation reaches the tail, the operation is what is known as stable—it has been
reliably ordered and persisted.

In order for this to work, each replica needs to know who is its predecessor and who is its
successor. So, when a replica fails, its neighbors should find out about it. In practice, one server
can detect the failure of another server by pinging it. If a server does not receive a response to its
ping within some maximum amount of time, then the server considers its peer crashed. Note that
this, in general, is not a safe thing to do—the network or the peer may be temporarily slow but the
peer is not necessarily crashed when the timer expires.

Nonetheless, we will assume here that failure detection does not make mistakes and that even-
tually every failure is detected. This is called the Fail-Stop failure model [SS83], which is distinct
from the often more realistic Crash Failure model where processes can crash but accurate detection
is not available. We will consider that more realistic failure model in the upcoming chapters. For
chain replication, when a replica crashes, it will reliably notify the other replicas by broadcasting
a message over the reliable network. Because failure detection is accurate, at most one replica can
think it is the head at any time (and, if so, it is in fact the head). Moreover, when it has detected
all its predecessors having failed, eventually some replica thinks it is the head. The same is true for
the tail.

164

3 const NREPLICAS = 3 # number of replicas
4 const NOPS = 2 # number of operations (or clients)
5

6 network = {} # the network is a set of messages
7

8 def send(self, dst, msg): # send msg to replica dst
9 atomically network |= { (dst, (self, msg)) }

10

11 def broadcast(self, msg): # broadcast msg to all
12 atomically for dst in {1..NREPLICAS}:
13 network |= { (dst, (self, msg)) }
14

15 def receive(self) returns msgs: # return messages for me
16 msgs = { payload for (dst, payload) in network where (dst == self) }
17

18 def crash(self): # server ’self ’ is crashing
19 broadcast(self, "crash") # notify all other replicas
20 stop()
21

22 def is prefix(hist1, hist2) returns result : # hist1 is a strict prefix of hist2
23 result = (len(hist1) < len(hist2)) and
24 all(hist1 [i] == hist2 [i] for i in {0..len(hist1)–1})

Figure 28.3: [code/chain.hny] Chain Replication (part 1)

165

https://harmony.cs.cornell.edu/code/chain.hny

3 const NREPLICAS = 3 # number of replicas
4 const NOPS = 2 # number of operations (or clients)
5

6 network = {} # the network is a set of messages
7

8 def send(self, dst, msg): # send msg to replica dst
9 atomically network |= { (dst, (self, msg)) }

10

11 def broadcast(self, msg): # broadcast msg to all
12 atomically for dst in {1..NREPLICAS}:
13 network |= { (dst, (self, msg)) }
14

15 def receive(self) returns msgs: # return messages for me
16 msgs = { payload for (dst, payload) in network where (dst == self) }
17

18 def crash(self): # server ’self ’ is crashing
19 broadcast(self, "crash") # notify all other replicas
20 stop()
21

22 def is prefix(hist1, hist2) returns result : # hist1 is a strict prefix of hist2
23 result = (len(hist1) < len(hist2)) and
24 all(hist1 [i] == hist2 [i] for i in {0..len(hist1)–1})

Figure 28.4: [code/chain.hny] Chain Replication (part 2)

166

https://harmony.cs.cornell.edu/code/chain.hny

Figure 28.3 and Figure 28.4 show an implemenation of chain replication. The network is modeled
as a append-only set of messages of the form (destination, (source, payload)). When sending, a
message is atomically added to this set. A client broadcasts its operation to all replicas.

Each replica maintains its own history hist and a chain configuration config. The replica executes
a loop in which it receives and atomically handles messages until it crashes. As before, one of the
replicas cannot crash. Because replicas do not want to handle the same message twice, each replica
maintains a set received of messages it has already handled. Each replica then waits for a message
on the network it has not already handled before.

When a replica receives a client request, it adds the request to a set requests that it maintains.
A replica can only handle such a request if it is the head, but each replica can eventually become the
head so it should carefully save all requests. (In theory, it can remove them as soon as they are on
its history.) When a replica receives a failure notification, it updates its configuration accordingly.
When a non-head replica receives a history that extends its own history, then the replica adopts
the received history.

Next, if a replica is the head, it adds any requests it has received to its history unless they are
already on there. If a replica is the tail, it “delivers” operations on its history (by printing the
operation) that it has not already delivered. For this, it maintains a counter delivered that counts
the number of delivered requests. Any replica that is not the tail sends its history to its successor
in the chain.

The question is whether chain replication has the same behavior as the replicated state machine
specification of Figure 28.1. This can be checked using the following two Harmony commands:

$ harmony -o rsm.hfa code/rsm.hny

$ harmony -B rsm.hfa code/chain.hny

The first command outputs the behavior DFA of code/rsm.hny in the file rsm.hfa. The second
command checks that the behavior of code/chain.hny satisfies the DFA in rsm.hfa. Note that
chain replication does not produce all the possible behaviors of a replicated state machine, but all
its behaviors are valid.

The model has each replica send its entire history each time it extends its history. This is fine
for modeling, but in practice that would not scale. In practice, a predecessor would set up a TCP
connection to its successor and only send updates to its history along the TCP connection. Because
TCP connections guarantee FIFO order, this would be identical to the predecessor sending a series
of histories, but much more efficient.

167

Chapter 29

Working with Actions

So far we have mostly modeled concurrent activities using threads. Another way of modeling is
by enumerating all the possible state transitions from any given state. For example, this is how
things are commonly specified in TLA+. As in TLA+, we call such state transitions actions. In
this chapter we will revisit modeling chain replication, but this time using actions.

Figure 29.1 and Figure 29.2 contain the new specification. The state of the replicas and the
clients are stored in the variables replicas and clients respectively. Each type of action is captured
using a lambda and a method. The method updates the state, while the lambda enumerates the
possible actions of this type.

For example, consider the crash action. All replicas, except the replica that is immortal and
the replicas that have already crashed, can crash. There is a lambda crash that generates a set
of all possible crashes. Each element in the set is a thunk, that is, a delayed call of a method and
an argument [Ing61]. For example, ?do crash(1) is the action representing replica 1 failing. If we
look at the do crash(p) method, all it does is set the crashed field of the replica. The specification
does this for every type of action:

� sendOperation: a client broadcasts an operation to all replicas.

� gotOperation: the head replica adds the operation to its history.

� sendHist: a replica sends its history to its successor.

� gotHist: a replica accepts a history it has received.

� deliver: the tail delivers (prints) an operation.

� crash: a replica crashes.

� detect: a replica detects the crash of a peer.

The Harmony action module explores all possible behaviors of such a specification. It has a
single method explore that takes a set of lambdas, each of which returning a set of possible actions.

So, which of the two types of specification do you prefer? One metric is readability, but that is
subjective and depends on what you have experience with. Another object is the size of the state
space, and in general control over the state space that is being explored. Threads have hidden state

168

3 import list, action
4

5 const NREPLICAS = 3
6 const NOPS = 2
7

8 # Global state
9 let immortal = choose {1..NREPLICAS}:

10 replicas = { p: { .immortal : immortal == p, .crashed : False,
11 .requests: {}, .hist : [], .config : {1..NREPLICAS},
12 .received : {}, .delivered : 0 } for p in {1..NREPLICAS} }
13 clients = { c: { .sent request : False } for c in {1..NOPS} }
14

15 const is head = lambda(p): p == min(replicas[p].config) end
16 const is tail = lambda(p): p == max(replicas[p].config) end
17

18 def is successor(self, p) returns result :
19 let succ = { q for q in replicas[self].config where q > self }:
20 result = False if succ == {} else (p == min(succ))
21

22 def do sendOperation(c):
23 print(c)
24 clients[c].sent request = True
25 for p in {1..NREPLICAS}:
26 replicas[p].requests |= { c }
27

28 const sendOperation = lambda(): { ?do sendOperation(c)
29 for c in {1..NOPS} where not clients[c].sent request } end
30

31 def do gotOperation(self, op):
32 replicas[self].hist += [op,]
33

34 const gotOperation = lambda(): { ?do gotOperation(p, op)
35 for p in {1..NREPLICAS}
36 where not replicas[p].crashed and is head(p)
37 for op in replicas[p].requests
38 where op not in replicas[p].hist } end
39

40 def do sendHist(self, p):
41 replicas[p].received |= { replicas[self].hist }

Figure 29.1: [code/chainaction.hny] Chain Replication specification using actions (part 1)

169

https://harmony.cs.cornell.edu/code/chainaction.hny

45 const sendHist = lambda(): { ?do sendHist(p, q)
46 for p in {1..NREPLICAS}
47 where not replicas[p].crashed
48 for q in {1..NREPLICAS}
49 where is successor(p, q) and (replicas[p].hist not in replicas[q].received)
50 } end
51

52 def do gotHist(self, hist):
53 replicas[self].hist = hist
54

55 const gotHist = lambda(): { ?do gotHist(p, hist)
56 for p in {1..NREPLICAS} where not replicas[p].crashed
57 for hist in replicas[p].received where (len(replicas[p].hist) < len(hist))
58 and list.startswith(hist, replicas[p].hist) } end
59

60 def do deliver(self):
61 print(self, replicas[self].hist [replicas[self].delivered])
62 replicas[self].delivered += 1
63

64 const deliver = lambda(): { ?do deliver(p)
65 for p in {1..NREPLICAS} where not replicas[p].crashed and
66 is tail(p) and (len(replicas[p].hist) > replicas[p].delivered) } end
67

68 def do crash(self):
69 replicas[self].crashed = True
70

71 const crash = lambda(): { ?do crash(p)
72 for p in {1..NREPLICAS}
73 where not replicas[p].crashed and not replicas[p].immortal } end
74

75 def do detect(self, p):
76 replicas[self].config –= { p }
77

78 const detect = lambda(): { ?do detect(p, q)
79 for p in {1..NREPLICAS} where not replicas[p].crashed
80 for q in {1..NREPLICAS} where replicas[q].crashed and
81 (q in replicas[p].config) } end
82

83 action.explore({sendOperation, gotOperation, sendHist,
84 gotHist, deliver, crash, detect})

Figure 29.2: [code/chainaction.hny] Chain Replication specification using actions (part 2)

170

https://harmony.cs.cornell.edu/code/chainaction.hny

such as their stacks, program counters, and local variables, adding to the state space in sometimes
unexpected ways. With an action-based specification all state is explicit, and all state changes are
explicit. This can be advantageous. On the other hand, the thread-based specification is easier to
turn into an actual running implementation.

171

Chapter 30

Replicated Atomic Read/Write
Register

A register is an object that you can read or write. In a distributed system, examples include a
shared file system (each file is a register) or a key/value store (each key corresponds to a register). A
simple shared register implementation would have its value maintained by a server, and clients can
read or write the shared register by exchanging messages with the server. We call two operations
such that one does not finish before the other starts concurrent. Since messages are delivered one
at a time to the server, concurrent operations on the shared register appear atomic. In particular,
we have the following three desirable properties:

1. All write operations are ordered;

2. A read operation returns either the last value written or the value of a concurrent write
operation.

3. If read operation r1 finishes before read operation r2 starts, then r2 cannot return a value
that is older than the value returned by r1.

It is instructive to look at the test program and its output in Figure 30.2. This is for the case
when there is only a single reader thread (identified as “1”) and a single writer thread (identified
as “−1”), but already there are many cases to consider. Each thread prints information just before
and just after doing their single operation. The output shows all possible interleavings in the form
of a DFA. Note that if the read operation starts after the write operation has completed, then the
read operaion must return the new value. However, if the two operations interleave in some way,
then the read operation can return either the old or the new value.

Unfortunately, a server is a single point of failure: if it fails, all its clients suffer. We would
therefore like to find a solution that can survive the crash of a server. While we could use Chain
Replication to replicate the register, in this chapter we will use a solution that does not assume
that crashes can be accurately detected.

We will again replicate the register object: maintain multiple copies, but we will not use the
replicated state machine approach. One could, for example, imagine that clients write to all copies
and read from any single one. While this solves the single-point-of-failure problem, we lose all the

172

1 reg = None
2

3 def init():
4 pass
5

6 def read(uid) returns contents:
7 atomically contents = reg
8

9 def write(uid, v):
10 atomically reg = v

Figure 30.1: [code/register.hny] An atomic read/write register

nice properties above. For one, it is not guaranteed that all servers receive and process all write
operations in the same order.

We present a protocol preserving these properties that is based on the work by Hagit Attiya,
Amotz Bar-Noy, and Danny Dolev [ABND95]. In order to tolerate F failures, it uses N = 2F +
1 servers. In other words, the register survives as long as a strict majority of its copies survive.
All write operation will be ordered by a unique logical timestamp (see also Chapter 13). Each
server maintains not only the value of the object, but also the timestamp of its corresponding write
operation.

Each read and write operation consists of two phases. In a phase, a client broadcasts a request
to all servers and waits for responses from a majority (N – F or equivalently F + 1 servers). Note
that because we are assuming that no more than F servers can fail, doing so is safe, in that a client
cannot indefinitely block as long as that assumption holds.

In the first phase, a client asks each server for its current timestamp and value. After receiving
N – F responses, the client determines the response with the highest timestamp. In case of a write
operation, the client then computes a new unique timestamp that is strictly higher than the highest
it has seen. To make this work, timestamps are actually lexicographically ordered tuples consisting
of an integer and the unique identifier of the client that writes the value. So, if (t, c) is the highest
timestamp observed by client c′, and c′ needs to create a new timestamp, it can select (t + 1, c′).
After all (t+ 1, c′) > (t, u) and no other client will create the same timestamp.

Suppose client c′ is trying to write a value v. In phase 2, client c′ broadcasts a request containing
timestamp (t + 1, c′) and v. Each server that receives the request compares (t + 1, c′) against its
current timestamp. If (t+ 1, c′) is larger than its current timestamp, it adopts the new timestamp
and its corresponding value v. In either case, the server responds to the client. Upon c′ receiving
a response from N – F servers, the write operation completes. In case of a read operation, client
c′ simply writes back the highest timestamp it saw in the first phase along with its corresponding
value.

Figure 30.3 contains the code for a server, as well as the code for read and write operations.
For efficiency of model checking, the servers are anonymous—otherwise we would have to consider
every permutation of states of those servers. Because the servers are anonymous, they may end

173

https://harmony.cs.cornell.edu/code/register.hny

1 import register
2

3 const NREADERS = 2
4 const NWRITERS = 1
5

6 def reader(i):
7 print(i, "reads")
8 let v = register.read(i):
9 print(i, "read", v)

10

11 def writer(i):
12 print(i, "writes")
13 register.write(i, i)
14 print(i, "wrote")
15

16 register.init()
17 for i in { 1 .. NREADERS }:
18 spawn reader(i)
19 for i in { 1 .. NWRITERS }:
20 spawn writer(–i)

Figure 30.2: [code/abdtest.hny] Behavioral test for atomic read/write registers and the output for
the case that NREADERS = NWRITERS = 1

174

https://harmony.cs.cornell.edu/code/abdtest.hny

1 import bag
2

3 const F = 1
4 const N = (2 * F) + 1
5

6 network = bag.empty()
7

8 def send(m): atomically network = bag.add(network, m)
9

10 def server():
11 var t, v, received = (0, None), None, {}
12 while True:
13 atomically when exists m in { k for k in keys network – received
14 where k.type in {"read", "write"} }:
15 received |= { m }
16 if (m.type == "write") and (m.value[0] > t):
17 t, v = m.value
18 send({ .type: .response, .dst : m.src, .value: (t, v) })
19

20 def init():
21 for i in { 1 .. N }: spawn eternal server()
22

23 def receive(uid, phase) returns quorums:
24 let msgs = { m:c for m:c in network
25 where (m.type == .response) and (m.dst == (uid, phase)) }:
26 quorums = bag.combinations(msgs, N – F)
27

28 def read(uid) returns contents:
29 send({ .type: "read", .src: (uid, 1) })
30 atomically when exists msgs in receive(uid, 1):
31 let (t, v) = max(m.value for m in keys msgs):
32 send({ .type: "write", .src: (uid, 2), .value: (t, v) })
33 contents = v
34 atomically when exists msgs in receive(uid, 2):
35 pass
36

37 def write(uid, v):
38 send({ .type: "read", .src: (uid, 1) })
39 atomically when exists msgs in receive(uid, 1):
40 let (t,) = max(m.value for m in keys msgs)
41 let nt = (t [0] + 1, uid):
42 send({ .type: "write", .src: (uid, 2), .value: (nt, v) })
43 atomically when exists msgs in receive(uid, 2):
44 pass

Figure 30.3: [code/abd.hny] An implementation of a replicated atomic read/write register

175

https://harmony.cs.cornell.edu/code/abd.hny

up sending the same exact message, but clients are waiting for a particular number of messages.
Because of this, we will model the network as a bag of messages.

A server initializes its timestamp t to (0, None) and its value to None. Each server also keeps
track of all the requests its already received so it doesn’t handle the same request twice. The rest
of the code is fairly straightforward.

Read and write operations are both invoked with a unique identifier uid. Both start by broad-
casting a .read request to all servers and then waiting for a response from N – F servers. The
receive() function uses the bag.combinations method to find all combinations of subsets of re-
sponses of size N – F. The second phase of each operation is similar.

Figure 30.2 can be used to test this protocol, although you will notice that the model checker
cannot deal with cases involving more than three client threads. Three is just enough to check the
third property listed above (using one writer and two readers). Doing so illustrates the importance
of the second phase of the read operation. You can comment out Lines 34, 36, and 37 in Figure 30.3
and to elide the second phase and see what goes wrong.

One may wonder how failures can occur in this model. They are not explicitly modeled, but
Harmony tries every possible execution. This includes executions in which the clients terminate
before F of the servers start executing. To the clients, this is indistinguishable from executions in
which those servers have failed.

176

Chapter 31

Distributed Consensus

Distributed consensus is the problem of having a collection of processors agree on a single value
over a network. For example, in state machine replication, the state machines have to agree on
which operation to apply next. Without failures, this can be solved using leader election: first
elect a leader, then have that leader decide a value. But consensus often has to be done in adverse
circumstances, for example in the face of processor failures.

Each processor proposes a value, which we assume here to be from the set { 0, 1 }. By the usual
definition of consensus, we want the following three properties:

1. Validity : a processor can only decide a value that has been proposed;

2. Agreement : if two processors decide, then they decide the same value.

3. Termination: each processor eventually decides.

The consensus problem is impossible to solve in the face of processor failures and without making
assumptions about how long it takes to send and receive a message [FLP85]. Here we will not worry
about Termination.

Figure 31.1 presents a specification for binary consensus—the proposals are from the set {0, 2}
In this case there are four processors. The proposal of processor i is in proposals[i]. The decision
is chosen from the set of proposals. Each processor may or may not print the decision—capturing
the absence of the Termination property. It may be that no decisions are made, but that does not
violate either Validity or Agreement. Thus the behavior of the program is to first print the array
of proposals, followed by some subset of processors printing their decision. Notice the following
properties:

� there are 16 = 24 possible proposal configurations;

� all processors that decide decide the same value;

� if all processors propose 0, then all processors that decide decide 0;

� if all processors propose 1, then all processors that decide decide 1.

This is just the specification—in practice we do not have a shared variable in which we can store
the decision a priori. We will present a simple consensus algorithm that can tolerate fewer than

177

1 const N = 4
2

3 proposals = [choose({0, 1}) for i in {0..N–1}]
4 decision = choose { x for x in proposals }
5

6 def processor(proposal):
7 if choose { False, True }:
8 print decision
9

10 print proposals
11 for i in {0..N–1}:
12 spawn processor(proposals[i])

Figure 31.1: [code/consensus.hny] Distributed consensus code and behavior DFA

178

https://harmony.cs.cornell.edu/code/consensus.hny

1/3rd of processors failing by crashing. More precisely, constant F contains the maximum number
of failures, and we will assume there are N = 3F + 1 processors.

Figure 31.2 presents our algorithm. Besides the network variable, it uses a shared list of pro-
posals and a shared set of decisions. In this particular algorithm, all messages are broadcast to all
processors, so they do not require a destination address. The N processors go through a sequence
of rounds in which they wait for N – F messages, update their state based on the messages, and
broadcast messages containing their new state. The reason that a processor waits for N – F rather
than N messages is because of failures: up to F processors may never send a message and so it
would be unwise to wait for all N. You might be tempted to use a timer and time out on waiting
for a particular processor. But how would you initialize that timer? While we will assume that the
network is reliable, there is no guarantee that messages arrive within a particular time. We call a
set of N – F processors a quorum. A quorum must suffice for the algorithm to make progress.

The state of a processor consists of its current round number (initially 0) and an estimate
(initially the proposal). Therefore, messages contain a round number and an estimate. To start
things, each processor first broadcasts its initial round number and initial estimate. The number of
rounds that are necessary to achieve consensus is not bounded. But Harmony can only check finite
models, so there is a constant NROUNDS that limits the number of rounds.

In Line 21, a processor waits for N – F messages using the Harmony atomically when ex-
ists statement. Since Harmony has to check all possible executions of the protocol, the
receive(round, k) method returns all subbags of messages for the given round that have size
k = N – F. The method uses a dictionary comprehension to filter out all messages for the given
round and then uses the bag.combinations method to find all combinations of size k. The atom-
ically when exists statement waits until there is at least one such combination and then chooses
an element, which is bound to the quorum variable. The body of the statement is then executed
atomically. This is usually how distributed algorithms are modeled, because they can only inter-
act through the network. There is no need to interleave the different processes other than when
messages are delivered. By executing the body atomically, a lot of unnecessary interleavings are
avoided and this reduces the state space that must be explored by the model checker significantly.

The body of the atomically when exists statement contains the core of the algorithm. Note
that N – F = 2F + 1, so that the number of messages is guaranteed to be odd. Also, because there
are only 0 and 1 values, there must exist a majority of zeroes or ones. Variable count [0] stores the
number of zeroes and count [1] stores the number of ones received in the round. The rules of the
algorithm are simple:

� update estimate to be the majority value;

� if the quorum is unanimous, decide the value.

After that, proceed with the next round.
To check for correct behavior, run the following two commands:

$ harmony -o consensus.hfa code/consensus.hny

$ harmony -B consensus.hfa code/bosco.hny

Note that the second command prints a warning: “behavior warning: strict subset of

specified behavior.” Thus, the set of behaviors that our algorithm generates is a subset of the
behavior that the specification allows. Figure 31.3 shows the behavior, and indeed it is not the

179

1 import bag
2

3 const F = 1
4 const N = (3 * F) + 1
5 const NROUNDS = 3
6

7 proposals = [choose({0, 1}) for i in {0..N–1}]
8 network = bag.empty()
9

10 def broadcast(msg):
11 atomically network = bag.add(network, msg)
12

13 def receive(round, k) returns quorum:
14 let msgs = { e:c for (r,e):c in network where r == round }:
15 quorum = bag.combinations(msgs, k)
16

17 def processor(proposal):
18 var estimate, decided = proposal, False
19 broadcast(0, estimate)
20 for round in {0..NROUNDS–1}:
21 atomically when exists quorum in receive(round, N – F):
22 let count = [bag.multiplicity(quorum, i) for i in { 0..1 }]:
23 assert count [0] != count [1]
24 estimate = 0 if count [0] > count [1] else 1
25 if count [estimate] == (N – F):
26 if not decided :
27 print estimate
28 decided = True
29 assert estimate in proposals # check validity
30 broadcast(round + 1, estimate)
31

32 print proposals
33 for i in {0..N–1}:
34 spawn processor(proposals[i])

Figure 31.2: [code/bosco.hny] A crash-tolerant consensus protocol

180

https://harmony.cs.cornell.edu/code/bosco.hny

Figure 31.3: The behavior DFA for Figure 31.2

181

same as the behavior of Figure 31.1. This is because in our algorithm the outcome is decided a
priori if more than twothirds of the processors have the same proposal, whereas in the consensus
specification the outcome is only decided a priori if the processors are initially unanimous. Another
difference is that if the outcome is decided a priori, all processors are guaranteed to decide.

While one can run this code within little time for F = 1, for F = 2 the state space to explore is
already quite large. One way to reduce the state space to explore is the following realization: each
processor only considers messages for the round that it is in. If a message is for an old round, the
processor will ignore it; if a message is for a future round, the processor will buffer it. So, one can
simplify the model and have each processor wait for all N messages in a round instead of N – F. It
would still have to choose to consider just N – F out of those N messages, but executions in which
some processors are left behind in all rounds are no longer considered. It still includes executions
where some subset of N – F processors only choose each other messages and essentially ignore the
messages of the remaining F processors, so the resulting model is just as good.

Another way to reduce the state space to explore is to leverage symmetry. First of all, it does
not matter who proposes a particular value. Also, the values 0 and 1 are not important to how the
protocol operates. So, with 5 processors (F = 2), say, we only need to explore the cases where no
processors propose 1, where exactly one processors proposes 1, and where 2 processors proposes 1.

Figure 31.4 shows the code for this optimized model. Running this with F = 2 does not take
very long and this approach is a good blueprint for testing other round-based protocols (of which
there are many).

Exercises

31.1 The algorithm as given works in the face of crash failures. A more challenging class to
tolerate are arbitrary failures in which up to F processors may send arbitrary messages, including
conflicting messages to different peers (equivocation). The algorithm can tolerate those failures if
you use N = 5F – 1 processors instead of N = 3F – 1. Check that.

31.2 In 1983, Michael Ben-Or presented a randomized algorithm that can tolerate crash failures
with just N = 2F – 1 processors [BO83]. Implement this algorithm.

182

1 import bag
2

3 const F = 1
4 const N = (3 * F) + 1
5 const NROUNDS = 3
6

7 let n zeroes = choose { 0 .. N / 2 }:
8 proposals = ([0,] * n zeroes) + ([1,] * (N – n zeroes))
9 network = bag.empty()

10

11 def broadcast(msg):
12 atomically network = bag.add(network, msg)
13

14 def receive(round) returns quorum:
15 let msgs = { e:c for (r,e):c in network where r == round }:
16 quorum = {} if bag.size(msgs) < N else { msgs }
17

18 def processor(proposal):
19 var estimate, decided = proposal, False
20 broadcast(0, estimate)
21 for round in {0..NROUNDS–1}:
22 atomically when exists msgs in receive(round):
23 let choices = bag.combinations(msgs, N – F)
24 let quorum = choose(choices)
25 let count = [bag.multiplicity(quorum, i) for i in { 0..1 }]:
26 assert count [0] != count [1]
27 estimate = 0 if count [0] > count [1] else 1
28 if count [estimate] == (N – F):
29 if not decided :
30 print estimate
31 decided = True
32 assert estimate in proposals # validity
33 broadcast(round + 1, estimate)
34

35 print proposals
36 for i in {0..N–1}:
37 spawn processor(proposals[i])

Figure 31.4: [code/bosco2.hny] Reducing the state space

183

https://harmony.cs.cornell.edu/code/bosco2.hny

Chapter 32

Paxos

Paxos [Lam98] is the most well-known family of consensus protocols for environments in which
few or no assumptions are made about timing. In this chapter, we present a basic version of a
Paxos protocol, one that is single-decree (only tries to make a single decision). It uses two kinds
of processors: leaders and acceptors. In order to tolerate F crash failures, you need at least F + 1
leaders and 2F + 1 acceptors, but leaders and acceptors can be colocated, so in total only 2F + 1
independently failing processors are needed. Here we provide only a rudimentary introduction to
Paxos; for more detailed information refer to [Lam98].

As in the consensus protocol of Chapter 31, Paxos uses rounds of messaging. The communication
pattern, however, is different. Similar to the atomic read/write register protocol in Chapter 30,
Paxos uses two kinds of rounds: “Phase 1” and “Phase 2” rounds. Rounds are identified by a so-
called ballot number combined with the phase number. Different leaders are in charge of different
ballot numbers. Leaders broadcast “Type A” messages to the acceptors, which respond point-to-
point with “Type B” messages.

Figure 32.1 and Figure 32.2 contain the code for this Paxos protocol. Paxos is perhaps best
understood starting with the second phase. At the end of the first phase, the leader broadcasts a
2.A message (Phase 2, Type A) to the acceptors containing the ballot number and a proposal and
then waits for N – F matching 2.B responses from the acceptors. If each response contains the ballot
number and the proposal, then the proposal is deemed decided. But one or more of the responses
can contain a higher ballot number, in which case the leader has to try again with an even higher
ballot number. This is where the first phase comes in.

It is not possible that an acceptor responds with a smaller ballot number. This is because
acceptors maintain two state variables. One is ballot, the highest ballot number they have seen.
Second is a variable called last accepted that, if not None, contains the last proposal the acceptor
has accepted and the corresponding ballot number. The acceptor also contains a set received that
contains (ballot, phase) tuples identifiying all rounds that the ballot has already participated in.
An acceptor waits for a message for a round that is not in received. If its ballot number is higher
than what it has seen before, the acceptor moves into that ballot. If the phase is 2, then the
acceptor accepts the proposal and remembers when it did so by saving the (ballot, proposal) tuple in
last accepted. In all cases, the acceptor responds with the current values of ballot and last accepted.

In its first phase, a leader of a ballot must come up with a proposal that cannot conflict with a
proposal of an earlier ballot that may already have been decided. To this end, the leader broadcasts

184

3 import bag
4

5 const F = 1
6 const NACCEPTORS = (2 * F) + 1
7 const NLEADERS = F + 1
8 const NBALLOTS = 2
9

10 network = bag.empty()
11

12 proposals = [choose({0, 1}) for i in {0..NLEADERS–1}]
13

14 def send(msg):
15 atomically network = bag.add(network, msg)
16

17 def receive(ballot, phase) returns quorum:
18 let msgs = { e:c for (b,p,t,e):c in network
19 where (b,p,t) == (ballot, phase, "B") }:
20 quorum = bag.combinations(msgs, NACCEPTORS – F)
21

22 print proposals
23 for i in {0..NLEADERS – 1}:
24 spawn leader(i + 1, proposals[i])
25 for i in {1..NACCEPTORS}:
26 spawn eternal acceptor()

Figure 32.1: [code/paxos.hny] A version of the Paxos protocol, Part 1

185

https://harmony.cs.cornell.edu/code/paxos.hny

30 def leader(self, proposal):
31 var ballot, estimate, decided = self, proposal, False
32 send(ballot, 1, "A", None)
33 while ballot <= NBALLOTS:
34 atomically when exists quorum in receive(ballot, 1):
35 let accepted = { e for e: in quorum where e != None }:
36 if accepted != {}:
37 , estimate = max(accepted)
38 send(ballot, 2, "A", estimate)
39 atomically when exists quorum in receive(ballot, 2):
40 if bag.multiplicity(quorum, (ballot, estimate)) == (NACCEPTORS – F):
41 assert estimate in proposals # validity
42 if not decided :
43 print estimate
44 decided = True
45 ballot += NLEADERS

46 if ballot <= NBALLOTS:
47 send(ballot, 1, "A", None)
48

49 def acceptor():
50 var ballot, last accepted, received = 0, None, {}
51 while True:
52 atomically when exists b,p,e in { (bb,pp,ee) for bb,pp,tt,ee: in network
53 where ((bb,pp) not in received) and (tt == "A") }:
54 received |= { (b, p) }
55 if b >= ballot :
56 ballot = b
57 if p == 2:
58 last accepted = (ballot, e)
59 send(b, p, "B", last accepted)

Figure 32.2: [code/paxos.hny] A version of the Paxos protocol, Part 2

186

https://harmony.cs.cornell.edu/code/paxos.hny

a 2.A message to the acceptors and awaits N – F of their last accepted values. If all those acceptors
responded with None, then the leader is free to choose its own proposal. Otherwise the leader
updates its proposal with the one corresponding to the highest ballot number. The leader then
moves on to the second round.

To run and check the Paxos code, do the following (leveraging the consensus specification of
Figure 31.1):

$ harmony -o consensus.hfa -cN=2 code/consensus.hny

$ harmony -B consensus.hfa code/paxos.hny

You should get a warning that our implementation of Paxos does not generate all possible
behaviors. This is because we only run the protocol for a finite number of ballots, and therefore at
least one of the ballots will be successful. With an unlimited number of ballots, Paxos may never
decide unless you make some liveness assumptions.

Exercises

32.1 Perhaps the trickiest detail of the algorithm is that, in Line 37 of Figure 32.2, the leader
selects the proposal with the highest ballot number it receives. Replace the max operator in that
statement with choose and see if it finds a problem. First try with NBALLOTS = 2 and then with
NBALLOTS = 3. (Warning, the latter may take a long time.) If it finds a problem, analyze the output
and see what went wrong.

32.2 [MWA+19] discusses a buggy version of Paxos. In this version, the responses to the second
phase are matched not by ballot number but by the value of the proposal. Implement this version
and, using Harmony, find the problem this causes.

187

Chapter 33

Needham-Schroeder
Authentication Protocol

The Needham-Schroeder protocol [NS78] is a security protocol in which two parties authenticate
one another by exchanging large and recently created random numbers called nonces that nobody
else should be able to read. The nonces should only be used once for an instantiation of the protocol
between honest participants (i.e., participants that follow the protocol). The version we describe
here uses public key cryptography [DH76]: with public key cryptography it is possible to create a
message for a particular destination that only that destination can read. We denote with ⟨m⟩p a
message m encrypted for p so that only p can decrypt the message and see that it contains m.

Suppose Alice wants to communicate with Bob. The three critical steps in the Needham-
Schroeder protocol are as follows:

1. Alice creates a new nonce NA and sends ⟨1, A,NA⟩Bob to Bob;

2. Upon receipt, Bob creates a new nonce NB and sends ⟨2, NA, NB⟩Alice to Alice;

3. Alice sends ⟨3, NB⟩Bob to Bob.

When Bob receives ⟨1, A,NA⟩Bob, Bob does not know for sure that the message came from
Alice, and even if it came from Alice, it does not know if Alice sent the message recently or if it
was replayed by some adversary. When Alice receives ⟨2, NA, NB⟩Alice, Alice does know that, if
Bob is honest, (1) Bob and only Bob could have created this message, and (2) Bob must have done
so recently (since Alice created NA). When Bob receives ⟨3, NB⟩Bob, Bob decides that it is Alice
that is trying to communicate at this time. Since Bob created NB recently and sent it encrypted to
Alice, Bob does not have to worry that the type 3 message was an old message that was replayed by
some adversary. Also, if Alice is honest, it seems only Alice can have seen the message containing
NB .

Thus, the intended security properties of this protocol are symmetric. Assuming Alice and Bob
are both honest:

� if Alice finishes the protocol with Bob and received BN from Bob, then nobody but Alice and
Bob can learn NB .

188

1 network = {}
2

3 dest = choose({ None, "Bob", "Corey" })
4

5 def send(msg):
6 atomically network |= { msg }
7

8 def alice():
9 if dest != None:

10 send({ .dst : dest,
11 .contents: { .type: 1, .nonce: "nonceA", .initiator : "Alice" } })
12 atomically when exists m in network when (m.dst == "Alice")
13 and (m.contents.type == 2) and (m.contents.nonce == "nonceA"):
14 send({ .dst : dest, .contents: { .type: 3, .nonce: m.contents.nonce2 } })
15

16 def bob():
17 atomically when exists m in network when (m.dst == "Bob")
18 and (m.contents.type == 1) and (m.contents.initiator == "Alice"):
19 send({ .dst : "Alice",
20 .contents: { .type: 2, .nonce: m.contents.nonce, .nonce2 : "nonceB" } })
21 atomically when exists m in network when (m.dst == "Bob")
22 and (m.contents.type == 3) and (m.contents.nonce == "nonceB"):
23 assert dest == "Bob"
24

25 def corey():
26 var received, nonces, msgs = {}, { "nonceC" }, {}
27 while True:
28 atomically when exists m in network – received when m.dst == "Corey":
29 received |= { m }
30 nonces |= { m.contents.nonce }
31 if m.contents.type == 2:
32 nonces |= { m.contents.nonce2 }
33 for dst in { "Alice", "Bob" } for n in nonces:
34 msgs |= {{ .dst : dst, .contents: { .type: 1, .nonce: n, .initiator : ini }}
35 for ini in { "Alice", "Bob" }}
36 msgs |= {{ .dst : dst, .contents: { .type: 2, .nonce: n, .nonce2 : n2 }}
37 for n2 in nonces }
38 msgs |= {{ .dst : dst, .contents: { .type: 3, .nonce: n }}}
39 send(choose(msgs – network))
40

41 spawn alice(); spawn bob()
42 spawn eternal corey()

Figure 33.1: [code/needhamschroeder.hny] Needham-Schroeder protocol and an attack

189

https://harmony.cs.cornell.edu/code/needhamschroeder.hny

� if Bob finishes the protocol with Alice and received AN from Alice, then nobody but Bob and
Alice can learn NA.

After the protocol, Alice can includeNA in messages to Bob and Bob can includeNB in messages
to Alice to authenticate the sources of those messages to one another.

Figure 33.1 shows the protocol implemented in Harmony. A message ⟨m⟩p is encoded in Harmony
as a dictionary {.dst : p, .contents : m}. The code for Alice and Bob simply follows the steps
listed above.

Unfortunately, the protocol turns out to be incorrect, but it took 17 years before somebody
noticed [Low95]. Model checking can be used to find the bug [Low96]. To demonstate the bug, we
need to model the environment. In particular, we introduce a third party, which we will call Corey.
We want to make sure that Corey cannot impersonate Alice or Bob. However, it is possible that
Alice tries to set up an authenticated connection to Corey using the Needham-Schroeder protocol.
That in itself should not be a problem if the protocol were correct.

The code in Figure 33.1 has Alice either not do anything, or has Alice try to set up a connection
to either Bob or Corey. Bob only accepts connections with Alice. Corey, when receiving a message
that it can decrypt, will try to find an attack by sending every possible message to every possible
destination. In particular, it keeps track of every nonce that it has seen and will try to construct
messages with them to send to Alice and Bob. If Bob finishes the protocol, it checks to see if Alice
actually tried to connect to Bob. If not, the assertion fails and an attack is found.

Running the code in Figure 33.1 quickly finds a viable attack. The attack goes like this:

1. Alice creates a new nonce NA and sends ⟨1, A,NA⟩Corey to Corey;

2. Upon receipt, Corey sends ⟨1, A,NA⟩Bob to Bob;

3. Upon receipt, Bob, believing it is engaging in the protocol with Alice, creates a new nonce
NB and sends ⟨2, NA, NB⟩Alice to Alice;

4. Alice thinks the message came from Corey (because it contains NA, which Alice created for
Corey and sent to Corey) and sends ⟨3, NB⟩Corey to Corey.

5. Corey learns NB and sends ⟨3, NB⟩Bob to Bob.

6. Bob receiving ⟨3, NB⟩Bob is identical to the situation in which Alice tried to set up a connection
to Bob, so Bob now thinks it is talking to Alice, even though Alice never tried to communicate
with Bob.

The security property is violated. In particular, Bob, duped by Corey, finished the protocol with
Alice and received AN , and even though Bob and Alice are both honest, Corey has a copy of AN .
So, Corey is now able to impersonate Alice to Bob (but not vice versa because Alice did not try to
authenticate Bob).

Exercises

33.1 Figure out how to fix the protocol.

33.2 There were two versions of the Needham-Schroeder protocol: the Symmetric Key protocol
and the Public Key protocol. In this chapter we only discussed the latter, but the former also had
a problem. See if you can find it using Harmony.

190

Bibliography

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124–142, January 1995.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems (doc-
toral dissertation). MIT Press, Cambridge, MA, USA, 1986.

[BH73] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc., USA, 1973.

[Bir89] Andrew D. Birrell. An introduction to programming with threads. SRC report 35,
Digital Systems Research Center, Palo Alto, CA, USA, January 1989.

[BNS69] László A. Bélády, R. A. Nelson, and G. S. Shedler. An anomaly in space-time char-
acteristics of certain programs running in a paging machine. Communications of the
ACM, 12(6):349–353, June 1969.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In Proceedings of the 2nd Annual ACM Symposium
on Principles of Distributed Computing, PODC’83, pages 27–30, New York, NY, USA,
1983. ACM.

[CES71] Edward G. Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM
Comput. Surv., 3(2):67–78, June 1971.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, April 1986.

[CHP71] Pierre-Jacques Courtois, Frans Heymans, and David L. Parnas. Concurrent control
with “readers” and “writers”. Commun. ACM, 14(10):667–668, October 1971.

[Cor69] Fernando J. Corbató. A paging experiment with the Multics system. In In Honor of
Philip M. Morse, pages 217–228, 1969.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5):281–283,
May 1979.

[DH76] Whitfield. Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

191

[Dij62] Edsger W. Dijkstra. EWD-35: Over de sequentialiteit van procesbeschrijvingen. circu-
lated privately, approx. 1962.

[Dij64] Edsger W. Dijkstra. EWD-108: Een algorithme ter voorkoming van de dodelijke
omarming. circulated privately, approx. 1964.

[Dij65a] Edsger W. Dijkstra. EWD-123: Cooperating Sequential Processes. circulated privately,
1965.

[Dij65b] Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8(9):569–569, September 1965.

[Dij72] Edsger W. Dijkstra. EWD-329 information streams sharing a finite buffer. 1972.

[Dij79] Edsger W. Dijkstra. EWD-703: A tutorial on the split binary semaphore. circulated
privately, March 1979.

[Dow09] Allen B. Downey. The Little Book Of Semaphores. Green Tea Press, 2009.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[Gra78] Jim N. Gray. Notes on data base operating systems, pages 393–481. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1978.

[Hav68] James W. Havender. Avoiding deadlock in multitasking systems. IBM Syst. J.,
7(2):74–84, June 1968.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI’73, page 235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun. ACM,
17(10):549–557, October 1974.

[Hol11] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edition, 2011.

[HW87] Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, page 13–26, New York, NY, USA, 1987. Association for Com-
puting Machinery.

[Ing61] Peter Z. Ingerman. Thunks: A way of compiling procedure statements with some
comments on procedure declarations. Commun. ACM, 4(1):55–58, jan 1961.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Comm. of the ACM, 21(7):558–565, July 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

192

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

[Lam09] Leslie Lamport. The PlusCal Algorithm Language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, pages 36–60, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, November 1995.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Tiziana Margaria and Bernhard Steffen, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 147–166, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes and monitors in
Mesa. Commun. ACM, 23(2):105–117, February 1980.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the 15th annual ACM
Symposium on Principles of Distributed Computing (PODC), 1996.

[MWA+19] Ellis Michael, Doug Woos, Thomas Anderson, Michael D. Ernst, and Zachary Tatlock.
Teaching rigorous distributed systems with efficient model checking. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Commun. ACM, 21(12):993–999, December 1978.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115 – 116, 1981.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[Sch97] Fred B. Schneider. On Concurrent Programming. Springer-Verlag, Berlin, Heidelberg,
1997.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-Stop Processors: An approach to
designing fault-tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222–238, August 1983.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Eric A. Brewer and Peter Chen, editors, 6th Sympo-
sium on Operating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, pages 91–104. USENIX Association, 2004.

193

Appendix A

Harmony Language Details

A.1 Value Types and Operators

Chapter 4 provides an introduction to Harmony values. Below is a complete list of Harmony value
types with examples:

Type Name Example
Boolean "bool" False, True
Integer "int" ..., –2, –1, 0, 1, 2, ...
String "str" "example", .example
Program Counter "pc" (method names, lambdas, and labels)
List "list" [1, 2, 3,], ((1, 2), 3), [1,], ()
Dictionary "dict" { .account : 12345, .valid : False }, {:}
Set "set" {}, { 1, 2, 3 }, { False, .id, 3 }
Address "address" ?lock, ?flags[2], None
Context "context" (generated by stop or save expression)

In Harmony, there is no distinction between tuples (denoted with parentheses) and lists (denoted
by square brackets). That is, their format is either (e, e, ..., e,) or [e, e, ..., e,]. They map indexes
(starting at 0) to Harmony values. If the list has two or more elements, then the final comma is
optional.

Method type e returns the type name of e.
All Harmony values are ordered with respect to one another. First they are ordered by type

according to the table above. So, for example, True < 0 < .xyz < { 0 }. Within types, the following
rules apply:

� False < True;

� integers are ordered in the natural way;

� strings are lexicographically ordered;

� program counters are ordered by their integer values;

194

� lists are lexicographically ordered;

� dictionaries are first converted into a list of ordered (key, value) pairs. Then two dictionaries
are lexicographically ordered by this representation;

� a set is first converted into an ordered list, then lexicographically ordered;

� Except for None, an address is a pair of a function a list of arguments. Addresses are
lexicographically ordered accordingly. None is the smallest address.

� contexts (Section C.3) are ordered deterministically in an unspecified way.

Harmony supports the following comparison operators:

e == e equivalence
e != e inequivalence
e < e, e <= e, e > e, e >= e comparison

Comparison operators can be chained: x <= y == z means x <= y and y == z, although y
is evaluated once in the former and twice in the latter expression. Note that evaluation of a chain
stops as soon as one of the comparisons fails. So, 1 < 0 < x does not evaluate x.

Harmony supports atomic expression evaluation using the following syntax: atomically e,
where e is some expression.

Boolean

The boolean type has only two possible values: False and True. Unlike Python, in Harmony
booleans are distinct from integers, and in particular False < 0. In statements and expressions
where booleans are expected, it is not possible to substitute values of other types.

Operations on booleans include:

e and e and ... conjuction
e or e or ... disjunction
e => e, e not => e implication
not e negation
v if e else v ' v or v ' depending on e
any s, all s disjunction / conjunction for set or list s

The meanings of or, and, and => are perhaps best explained by putting them in terms of the
ternary if else operator:

� x or y means True if x else y

� x and y means False if not x else y

� x => y means True if not x else y

195

Note that this means that the result of the operation may not be a Boolean. For example,
(False or 2) == 2. Also, the operators are not commutative. 2 or False is an illegal expression
because you cannot use an integer as a condition for if. (Unlike in Python, in Harmony only True
is “thruthy” and only False is “falsy.”) We recommend using only Booleans for these operators, so
that their outputs are also guaranteed to be a Boolean. Finally, note that the righthand side of the
expression may not be evaluated. For example, True or x evaluates to True without evaluating x.

Integer

The integer type supports any whole number. Harmony supports decimal integers, hexadecimal
integers (start with ‘0x’), binary integers (start with ‘0b’), and octal integers (start with ‘0o’).

In the C-based model checker, integers are currently implemented by two’s complement 60-bit
words. The model checker checks for overflow on various operations.

Operations on integers include:

–e negation
abs e absolute value
e + e + ... sum
e – e difference
e * e * ... product
e / e, e // e integer division
e % e, e mod e integer division remainder
e ** e power
˜e binary inversion
e & e & ... binary and
e | e | ... binary or
e ˆ e ˆ ... binary exclusive or
e << e binary shift left
e >> e binary shift right
{ e..e' } set of integers from e to e′ inclusive

String

A string is a sequence of zero or more unicode characters. If it consists entirely of alphanumerical
characters or underscore characters and does not start with a digit, then a string can be represented
by a “.” followed by the characters. For example, .example is the same as the string "example".

Native operations on strings include the following:

196

s k indexing
s s ... concatenation
s + s + ... concatenation
s * n n copies of s concatenated
v [not] in s check if v is [not] a substring in s
len s the length of s
str e string representation of any value e

Set

In Harmony you can create a set of any collection of Harmony values. Its syntax is v0, v1,
Python users: note that in Harmony the empty set is denoted as {}. (In Python, {} means the
empty dictionary, which is represented as {:} in Harmony.)

The set module (Section B.7) contains various convenient routines that operate on sets. Native
operations on sets include:

len s cardinality
s – s set difference
s & s & ... intersection
s | s | ... union
s ˆ s ˆ ... inclusion/exclusion (elements in odd number of sets)
choose s select an element (Harmony will try all)
min s minimum element
max s maximum element
any s True if any value is True
all s True if all values are True

In Python, the < operator on sets represents the subset relation. However, in Harmony < is
a total order. If you want to check if x is a subset of y, either use the subset method in the set

module or write something like (x | y) == y (the union of x and y is y).
Harmony also supports set comprehension. In its simplest form, {f(v) for v in s} returns a set

that is constructed by applying f to all elements in s (where s is a set or a list). This is known
as mapping. But set comprehension is much more powerful and can include joining multiple sets
(using nested for loops) and filtering (using the where keyword).

For example: x + y for x in s for y in s where (x * y) == 4 returns a set that is constructed
by summing pairs of elements from s that, when multiplied, have the value 4.

List or Tuple

In Harmony, there is no distinction between a list or a tuple. You can denote a list by a sequence
of values, each value terminated by a comma. As per usual, you can use brackets or parentheses at
your discretion. For Python users, the important thing to note is that a singleton list in Harmony

197

must contain a comma. For example [1,] is a list containing the value 1, while [1] is simply the
value 1.

The list module (Section B.6) contains various convenient routines that operate on lists or
tuples. Native operations on lists or tuples include the following:

t k indexing
t t ... concatenation
t + t + ... concatenation
t * n n copies of t concatenated
v [not] in t check if v is [not] a value in t
len t the length of t
min t the minimum value in t
max t the maximum value in t
any t True if any value is True
all t True if all values are True

Lists and tuples support comprehension. In its most basic form: [f(v) for v in t]. For example,
to check if any element in a list t is even, you can write: any((x % 2) == 0 for x in t).

The domain of a list L of length n, interpreted as a function, are the integers 0..n−1. It is illegal
to read L[n]. However, unlike Python, it is possible to write into L[n]. For example, if variable x
contains [1, 2], then the statement x [2] = 3 results in x having the value [1, 2, 3].

Dictionary

A dictionary maps a set of values (known as keys) to another set of values. The generic syntax of
a dictionary is {k0 : v0, k1 : v1, ...}. Different from Python, the empty dictionary is written as {:}
(because {} is the empty set in Harmony). If there are duplicate keys in the list, then only the
one with the maximum value survives. Therefore the order of the keys in the dictionary does not
matter.

Dictionaries support comprehension. The basic form is: { f(v):g(v) for v in s }.
There are various special cases of dictionaries, including lists, tuples, strings, and bags (multi-

sets) that are individually described below.
Operations on dictionaries include the following:

d k indexing
len d the number of keys in d
keys d the set of keys in d
k [not] in d check if k is [not] a key in d
min d the minimum value in d
max d the maximum value in d
any d True if any value is True
all d True if all values are True
d & d & ... dictionary intersection
d | d | ... dictionary union

198

Because in Harmony brackets are used for parsing purposes only, you can write d [k] (or d(k))
instead of d k. However, if k is a string like .id, then you might prefer the notation k.id.

Dictionary intersection and dictionary union are defined so that they work well with bags. With
disjoint dictionaries, intersection and union work as expected. If there is a key in the intersection,
then dictionary intersection retains the minimum value while dictionary union retains the maximum
value. Unlike Python, Harmony dictionary intersection and union are commutative and associative.

A bag is represented by a dictionary that maps each element to its multiplicity. For example,
{ 10:2, 12:1 } is the bag containing two copies of 10 and one copy of 12. The bagmodule (Section B.3)
contains various convenient routines that operate on bags. Native operations on bags include the
following:

v [not] in b check if v is [not] in b
t & t & ... bag intersection
t | t | ... bag union

Program Counter

A program counter is an integer that can be used to index into Harmony bytecode. When you
define a method, a lambda function, or a label, you are creating a constant of the program counter
type. You can create lambda functions similarly to Python, except that the expression has to end
on the keyword end. For example: lambda(x,y): x+y end.

Address

A Harmony address is a type of thunk consisting of a curried function and a list of arguments
[Ing61]. A thunk delays the invocation of the curried function. A function can be a constant or a
variable and the arguments are all Harmony values. Given an address p = ?a[b][c]..., you can use
the notation !p to evaluate it. Harmony will first evaluate a, then apply the result to b, then apply
the result to c, and so on.

As a simple example, ?5 is the address of the constant 5, and therefore !?5 evaluates to 5. Now
consider the following program:

1 let p = ?5:
2 assert !p == 5
3 !p = 5
4 !p = 4

The only line in this program that fails is the last one, as you are not allowed to store 4 at the
address of 5.

a can be a constant that maps Harmony values to Harmony values: dictionaries, lists, and
strings. In that case, ?a[b] refers to the value of entry b in a.

The most common use of addresses is when a is a shared variable. In that case !?a evaluates to
the current value of a.

199

Finally, a can be a program counter value (method or lambda). ?a(b) is then the thunk repre-
senting a delayed call to method a and argument b. In this case, !?a(b) evaluates a(b). For example,
the following Harmony program, perhaps surprisingly, does not run into failing assertions:

1 counter = 0
2

3 def f():
4 counter += 1
5 result = counter
6

7 let p = ?f():
8 if !p != 1: assert False
9 if !p != 2: assert False

10 if !p != 3: assert False

Internally, Harmony uses the address of a method variable and sometimes you see them on the
stack during a computation. If k is a method variable, then its address is output as ?@k. However,
at the Harmony language level there is no such thing as the address of a local variable. Consider
the following two programs:

1 x = 1
2 let p = ?x :
3 x = 2
4 assert !p == 2

1 var x = 1
2 let p = ?x :
3 x = 2
4 assert !p == 1

In the program on the left, x is a shared variable, and ?x is the location of variable x. In the
program on the right, x is a local variable. ?x evaluates x and then takes its address, so in this
case ?x equals ?1.

Like C, Harmony supports the shorthand p→v for the expression (!p).v.

Context

A context value (aka continuation) captures the state of a thread. A context is itself composed over
various Harmony values. The following operations generate contexts:

save e returns a Harmony value (see below)
stop p saves context in !p and stops the thread (see below)

The save e expression, when invoked, returns a tuple (e, c) where c is the context value of the
thread right after the save instruction finished. Using go c r the context can be turned into a new
thread that, instead, returns r from the save e expression. See Figure A.1 for an example of how
this could be used to fork a thread into two threads.

The stop p expression stores the context of the thread right after the expression in !p (i.e., p
must be an address value) and terminates the thread. The thread can later be reinstantiated with

200

go !p r, in which case the stop expression returns r. A thread can be for ever suspended using
stop None or just stop().

A.2 Statements

Harmony currently supports the following statements (below, S is a list of statements and an lvalue
is an expression you can use on the left-hand side of an assignment statement):

e e is an expression
lv = [lv =]... e lv is an lvalue and e is an expression
lv [op]= e op is one of +, -, *, /, //, %, &, |, ˆ, and, or
assert b [, e] b is a boolean. Optionally report value of expression e
await b b is a boolean
const a = e a is a bound variable, e is a constant expression
def m a [returns v]: S m is an identifier, a a bound variable, and v a variable
del lv delete lv
finally e e is a boolean expression that must hold in each final state
for a[:b] in e [where c]: S a and b are bound variables, e is a set, dictionary, or string
from m import ... m identifies a module
global v, ... v is a shared global variable
go c e c is a context, e is an expression
if b: S else: S b is a boolean, S is a list of statements
import m, ... m identifies a module
invariant e e is an invariant (must always hold)
let a = e: S a is a bound variable, e is an expression
pass do nothing
print e e is an expression
sequential v, ... v has sequential consistency
spawn [eternal] lv [, t] lv is an lvalue expression, t is the thread-local state
trap lv lv is an lvalue expression
var v = e v is a new variable, e is an expression
when b: S b is a boolean, S a list of statements
when exists a in e: S a is a bound variable, e is an expression
while b: S b is a boolean, S a list of statements

� Bound variables are read-only.

� A statement can be preceded by the atomically keyword to make the statement atomic.

� Multiple for statements can be combined into a single statement.

� Multiple let and when statements can be combined into a single statement.

201

Single expression evaluation

Any expression by itself can be used as a statement. The most common form of this is a function
application, for example: f(). This statement evaluates f() but ignores its result. It is equivalent
to the assignment statement = f().

Assignment

The statement x = 3 changes the state by assigning 3 to variable x (assuming x was not already 3).
x may be a local variable or a shared variable. The statement x = y = 3 first updates y, then x. The
statement x [f()] = y [g()] = h() first computes the address of x [f()], then computes the address of
y [g()], then evaluates h(), then assigns the resulting value to y [g()] (using its previously computed
address), and finally assigns the same value to x [f()] (again using its previously computed address).
The statement a,b = c assumes that c is a tuple with two values. It first evaluates the addresses
of a and b and first assigns to the latter and then the former. If c is not a tuple with two values,
then Harmony will report an error.

Assigning to (underscore) evaluates the righthand side expression but is otherwise a no-op.
The left-hand side can also contain constants. For example (3, x) = (3, True) assigns True to x.
However, (3, x) = (4, True) fails.

The statement x += 3 loads x, adds 3, and then stores the results in x. In this case, it is
equivalent to x = x+3. However, in general this is not so. For example, x [f()] += 3 only evaluates
f() once. Unlike Python, however, x += [3,] is equivalent to x = x + [3,] in Harmony. (In Python,
the following two compound statements lead to different results for y : x = y = []; x += [3] and
x = y = []; x = x + [3].)

assert

The statement assert b evaluates b and reports an error if b is false. It should be considered a no-
op—it is part of the specification, not part of the implementation of the algorithm. In particular, it
specifies an invariant: whenever the program counter is at the location where the assert statement
is, then b is always true.

If b is an expression, then it is evaluated atomically. Moreover, the expression is not allowed to
change the state. If it does change the state, Harmony will report an error as well.

As in Python, you can specify an additional expression: assert b, e. The value of e will be
reported as part of the error should b evaluate to false.

atomically

A statement can be preceded by the atomically keyword to make the statement atomic. The
statement atomically: S1; S2; ... evaluates statements S1, S2, ... atomically. This means that
the statement runs indivisibly—no other thread can interleave in the atomic statement. The only
exception to this is if the atomic block executes a stop expression. In this case, another thread
can run. When the original thread is resumed (using a go statement), it is once again atomically
executing.

atomically statements are useful for specification and implementing synchronization primitives
such as test-and-set. It is also useful for testing. It is not a replacement for lock/unlock, and should

202

not generally be used for synchronization otherwise. Lock/unlock does allow other threads to run
concurrently—just not in the same critical section.

await

The statement await b is equivalent to when b: pass. It is intended to improve readability of your
code.

const

The expression const N = 3 introduces a new constant N with the value 3. Evaluating N does
not lead to loading from a memory location. The assignment can be overridden with the -c flag:
harmony -cN=4 executes the model checker with 4 assigned to N instead of 3. Harmony also supports
const N, M = 3, 4, which assigns 3 to N and 4 to M. Harmony has limited support for constant folding.
For example, const N = 3 + 4 assigns value 7 to constant N.

def

The statement def m a [returns r]: S1; S2: ... defines a new program counter constant m referring
to a method that takes an argument a and executes the statements S1, S2, The argument
a can be a tuple pattern similar to those used in let and for statements. Examples include (),
(x,), (x, y), and (x, (y, z)). The given local variable names are assigned upon application and are
read-only. Optionally, a result variable r can be declared. If not declared, there is (for backwards
compatibility), a default result variable called result, initialized toNone. Harmony does not support
a return statement that breaks out of the code before executing the last statement.

del

The statement del x removes variable x from the state. x can be either a local or a shared
variable. For example, the statement del x.age removes the .age field from dictionary x. Harmony
automatically removes top-level local variables that are no longer in use from the state in order to
attempt to reduce the number of states that are evaluated during model checking.

del can also be used to remove elements from a list. x = [.a, .b, .c]; del x [1] results in x having
value [.a, .c].

finally

The statement finally c declares that boolean expression c must hold in each final state. c is
only allowed to read shared variables and is evaluated in each final state. If it evaluates to False,
Harmony reports an error. Harmony also reports an error if the expression evaluates to a value
other than False or True.

for ... in ... [where ...]

The statement for x in y : S1; S2; ... iterates over y and executes for each element the statements
S1, S2, y must be a set, list, dictionary, or string. y is evaluated only once at the beginning
of the evaluation of this statement. In case of a set, the result is sorted (using Harmony’s global

203

order on all values). In case of a dictionary, the statement iterates over the keys in order. For
each element, the statements S1, S2, ... are executed with local variable y having the value of the
element. x can be a pattern such as (a) or (a, (b, c)). If the pattern cannot be matched, Harmony
detects and error. It is allowed, but discouraged, to assign different values to x within statements
S1, S2,

Harmony also supports the form for k :v in y : S1; S2; This works similar, except that k is
bound to the key and v is bound to the value. If y is not a dictionary, then k ranges from 0 to
len(y) – 1.

The statement also supports nesting and filtering. Nesting is of the form for x1 in y1 for x2 in y2 : S1; S2; ...,
which is equivalent to the statement for x1 in y1 : for x2 in y2 : S1; S2; Filtering is of the form
for x in y where z : S1; S2; For example, for x in 1 .. 10 where (x % 2) == 0: S1; S2; ... only
evaluates statements S1, S2, ... for even x, that is, 2, 4, 6, 8, and 10.

Harmony does not support break or continue statements.

from ... import

The statement from x import a, b, ... imports module x and makes its constants a, b, ... also
constants in the current module. If a module is imported more than once, its code is only included
the first time. The constants will typically be the names of methods (program counter constants)
within the module.

You can import all constants from a module m (including program counter constants) using
the statement from m import *. This, however, excludes constants whose names start with the
character : those are considered private to the module.

global

The statement global v, ... tells the compiler that the given variables are shared global variables.

go

The statement go c e starts a thread with context c that has executed a stop or save expression.
The stop or save expression returns value e. The same context can be started multiple times,
allowing threads to fork. See Figure A.1 for an example.

if ... [elif ...]* [else]

Harmony supports if statements. In its most basic form, if c: S1; S2; ... evaluates c and executes
statements S1, S2, ... if and only if boolean expression c evaluated to true. Harmony checks
that c is either False or True—if neither is the case, Harmony reports an error. The statement
if c: S1, S2, ... else: T1; T2; ... is similar, but executes statements T1, T2, ... if and only if c
evaluated to False. You can think of elif c: as shorthand for else: if c:.

import

The statement import m1, m2, ... imports modules m1, m2, ... in that order. If a module is
imported more than once, its code is only included the first time. The constants (including method

204

1 def fork():
2 atomically:
3 let (r, ctx) = save True:
4 result = r
5 if r :
6 go ctx (False, None)
7

8 def main():
9 if fork():

10 print "parent"
11 else:
12 print "child"
13

14 spawn eternal main()

Figure A.1: Using save and go to implement fork()

constants) and shared variables declared in that module can subsequently be referenced by prepend-
ing “m.”. For example, method f() in imported module m is invoked by calling m.f (). If you would
prefer to invoke it simply as f(), then you have to import using the statement from m import f.

invariant

The statement invariant c declares that boolean expression c is an invariant. c is only allowed to
read shared variables and is evaluated atomically after every state change. If it ever evaluates to
False, Harmony reports an error. Harmony also reports an error if the expression evaluates to a
value other than False or True.

Invariants can be useful to specify the type of a global variable. For example, you can write
invariant (type(x) == "int") and ((x % 2) == 0) to state that x is an even integer variable.

let

You can introduce new bound variables in a method using the let statement. The statement
let a = b: S1; S2, ... evaluates b, assigns the result to read-only variable a, and evaluates statements
S1, S2, let supports pattern matching, so you can write let x, (y, z) = b: S1; S2, This will only
work if b is a tuple with two elements, the second of which also being a tuple with two elements—if
not, Harmony will report an error.

let statements may be nested, such as let a1 = b1 let a2 = b2 : S1; S2; Doing so can improve
readability by reducing indentation compared to writing them as separate statements. Compare
the following two examples:

205

1 let a = y :
2 let b = z :
3 ...

1 let a = y
2 let b = z :

pass

The pass statement does nothing.

print

The statement print e evaluates e and adds the result to the print log. The print log is used to
create an “external behavior DFA” for the Harmony program.

sequential

In Harmony, shared variable Load and Store operations are atomic and have sequential consistency.
However, Harmony does check for data races. A data race occurs when two or more threads simul-
taneously access the same shared variable, with at least one of the accesses being a Store operation
outside of an atomic block. If so, Harmony will report an error. This error can be suppressed
by declaring the shared variable as sequential. In particular, the statement sequential x, y, ...
specifies that the algorithm assumes that the given variables have sequential consistency.

Note that few modern processors support sequentially consistent memory by default, as doing
so would lead to high overhead.

spawn

The statement spawn lv starts a new thread that evaluates lvalue expression lv. The most typical
form is spawn f(a), where f is some method called with argument a. However, if c is a thunk, one
could also call spawn !c, say.

The default thread-local state of the thread, called self, is the empty dictionary by default. It
can be specified by adding a parameter: spawn m a, e specifies that e should be the initial value
of the thread-local state.

Harmony normally checks that all threads eventually terminate. If a thread may never terminate,
you should spawn it with spawn eternal m a to suppress those checks.

trap

The statement trap lv specifies that the current thread should evaluate lv at some future, unspec-
ified, time. It models a timer interrupt or any kind of asynchronous event to be handled by the
thread. Such interrupts can be disabled by setting the interrupt level of the thread to True using
the setintlevel operator.

206

var

You can introduce new local variables in a method using the var statement. The statement var a= b
evaluates b and assigns the result to local variable a. var supports pattern matching, so you can
write var x, (y, z) = b. This will only work if b is a tuple with two elements, the second of which
also being a tuple with two elements—if not, Harmony will report an error.

when

The statement when c: S1; S2; ... executes statements S1, S2, ... after waiting until c evaluates to
True. when statements are most useful when combined with the atomically keyword. If waiting
is an unused local variable, then atomically when c: S1; S2; ... is equivalent to

1 var waiting = True
2 while waiting :
3 atomically:
4 if c:
5 S1

6 S2

7 ...
8 waiting = False

Multiple let and when statements can be combined. The expressions before the colon are
re-evaluated repeated until all when conditions are satisfied.

when exists ... in ...

The statement when exists} x in y : S1; S2; ... requires that y evaluates to a set value. The
statement does the following three things:

� it waits until y is non-empty;

� it selects one element of y non-deterministically (using a choose expression);

� it executes statements S1, S2, ... with the selected element bound to read-only variable x.

x may be a pattern, like in let, for, and def statements. Harmony reports an error if y evaluates
to a value that is not a set.

when statements are most useful when combined with the atomically keyword. If waiting is
an unused local variable, then atomically when exists x in y : S1; S2; ... is equivalent to

207

1 var waiting = True:
2 while waiting :
3 atomically:
4 if y != {}:
5 let x = choose(y):
6 S1

7 S2

8 ...
9 waiting = False

The statement is particularly useful in programming network protocols when having to wait for
one or more messages and executing a set of actions atomically after the desired messages have
arrived.

while

The statement while c: S1; S2; ... executes statements S1, S2, ... repeatedly as long as c evaluates
to True. Harmony does not support break or continue statements.

A.3 Harmony is not object-oriented

Python is object-oriented, but Harmony is not. For Python programmers, this can lead to some
unexpected differences. For example, consider the following code:

1 x = y = [1, 2]
2 x [0] = 3
3 assert y [0] == 1

In Python, lists are objects. Thus x and y point to the same list, and the assertion would fail
if executed by Python. In Harmony, lists are values. So, when x is updated in Line 2, it does not
affect the value of y. The assertion succeeds. Harmony supports references to values (Chapter 7),
allowing programs to implement shared objects.

Because Harmony does not have objects, it also does not have object methods. However,
Harmony methods and lambdas are program counter constants. These constants can be added
to dictionaries. For example, in Figure 7.1 you can add the P enter and P exit methods to the
P mutex dictionary like so:

1 { .turn: 0, .flags: [False, False], .enter : P enter, .exit : P exit }

That would allow you to simulate object methods.
There are at least two reasons why Harmony is not object-oriented. First, object-orientation

often adds layers of indirection that would make it harder to model check and also to interpret the
results. Consider, for example, a lock. In Python, a lock is an object. A lock variable would contain

208

a reference to a lock object. In Harmony, a lock variable contains the value of the lock itself. Thus,
the following statement means something quite different in Python and Harmony:

1 x = y = Lock()

In Python, this creates two variables x and y referring to the same lock. In Harmony, the
two variables will be two different locks. If you want two variables referring to the same lock in
Harmony, you might write:

1 lock = Lock()
2 x = y = ?lock

or, using the alloc module,

1 from alloc import malloc
2 x = y = malloc(Lock())

The second reason for Harmony not being object-oriented is that many concurrency solutions
in the literature are expressed in C or some other low-level language that does not support object-
orientation, but instead use malloc and free.

A.4 Constants, Global and Local Variables

Each (non-reserved) identifier in a Harmony program refers to either a global constant, a global
shared variable, a local bound variable, a local mutable variable, or a module. Constants are
declared using const statements. Those constants are evaluated at compile-time.

Mutable method variables can be declared using the returns clause of a def statement or using
var. Bound variables, which are immutable, can be declared in def statements (i.e., arguments),
let statements, for loops, and when exists statements. Each thread has a mutable variable called
this that contains the thread-local state. Method variables are tightly scoped and cannot be shared
between threads. While in theory one method can be declared within another, they cannot share
local variables either. All other variables are global and must be initialized before spawned threads
start executing.

A.5 Operator Precedence

In Harmony, there is no syntactic difference between applying an argument to a function or an
index to a dictionary. Both use the syntax a b c We call this application, and application is
left-associative. So, a b c is interpreted as (a b) c: b is applied to a, and then c is applied to the
result. For readability, it may help to write a(b) for function application and a[b] for indexing. In
case b is a simple string, you can also write a.b for indexing.

There are three levels of precedence. Application has the highest precedence. So, !a b is
interpreted as !(a b) and a b + c d is interpreted as (a b) + (c d). Unary operators have the next

209

highest precedence, and the remaining operators have the lowest precedence. For example, −2 + 3
evaluates to 1, not −5.

Associative operators (+, ∗, |, &, ˆ, and, or) are interpreted as general n-ary operators, and
you are allowed to write a + b + c. However, ambiguous expressions such as a − b − c are illegal,
as is any combination of operators with an arity larger than one, such as a + b < c. In such cases
you have to add parentheses or brackets to indicate what the intended evaluation order is, such as
(a+ b) < c.

In almost all expressions, subexpressions are evaluated left to right. So, a[b] + c first evaluates
a, then b (and then applies b to a), and then c. The one exception is the expression a if c else b,
where c is evaluated first. In that expression, only a or b is evaluated depending on the value of c.
In the expression a and b and ..., evaluation is left to right but stops once one of the subexpressions
evaluates to False. Similarly for or, where evaluation stops once one of the subexpressions evaluates
to True. A sequence of comparison operations, such as a < b < c, is evaluated left to right but
stops as soon as one of the comparisons fails.

A.6 Tuples, Lists, and Pattern Matching

Harmony tuples and lists are equivalent. They can be bracketed either by ’(’ and ’)’ or by ’[’ and
’]’, but the brackets are often optional. Importantly, with a singleton list, the one element must be
followed by a comma. For example, the statement x = 1, assigns a singleton tuple (or list) to x.

Harmony does not support special slicing syntax like Python. To modify lists, use the subseq

method in the list module (Section B.6).
Harmony allows pattern matching against nested tuples in various language constructs. The

following are the same in Python and Harmony:

� x, = 1,: assigns 1 to x ;

� x, y = 1, (2, 3): assigns 1 to x and (2, 3) to y ;

� x, (y, z) = 1, (2, 3): assigns 1 to x, 2 to y, and 3 to z;

� x, (y, z) = 1, 2: generates an runtime error because 2 cannot be matched with (y, z);

� x [0], x [1] = x [1], x [0]: swaps the first two elements of list x.

As in Python, pattern matching can also be used in for statements. For example:

for key, value in [(1, 2), (3, 4)]: ...

Harmony (but not Python) also allows pattern matching in defining and invoking methods. For
example, you can write:

def f[a, (b, c)]: ...

and then call f[1, (2, 3)]. Note that the more familiar: def g(a) defines a method g with a single
argument a. Invoking g(1, 2) would assign the tuple (1, 2) to a. This is not consistent with Python
syntax. For single argument methods, you may want to declare as follows: def g(a,). Calling g(1,)

210

1 from stack import Stack, push, pop
2

3 teststack = Stack()
4 push(?teststack, 1)
5 push(?teststack, 2)
6 v = pop(?teststack)
7 assert v == 2
8 push(?teststack, 3)
9 v = pop(?teststack)

10 assert v == 3
11 v = pop(?teststack)
12 assert v == 1

Figure A.2: [code/stacktest.hny] Testing a stack implementation.

1 def Stack() returns stack:
2 stack = []
3

4 def push(st, v):
5 (!st)[len(!st)] = v
6

7 def pop(st) returns next :
8 let n = len(!st) – 1:
9 next = (!st)[n]

10 del (!st)[n]

Figure A.3: [code/stack1.hny] Stack implemented using a dynamically updated list.

assigns 1 to a, while calling g(1, 2) would result in a runtime error as (1, 2) cannot be matched
with (a,).

Pattern matching can also be used in const, let, and when exists statements.

A.7 Dynamic Allocation

Harmony supports various options for dynamic allocation. By way of example, consider a stack.
Figure A.2 presents a test program for a stack. We present four different stack implementations to
illustrate options for dynamic allocation:

1. Figure A.3 uses a single list to represent the stack. It is updated to perform push and pop

operations;

211

https://harmony.cs.cornell.edu/code/stacktest.hny
https://harmony.cs.cornell.edu/code/stack1.hny

1 import list
2

3 def Stack() returns stack:
4 stack = []
5

6 def push(st, v):
7 !st += [v,]
8

9 def pop(st) returns next :
10 let n = len(!st) – 1:
11 next = (!st)[n]
12 !st = list.subseq(!st, 0, n)

Figure A.4: [code/stack2.hny] Stack implemented using static lists.

1 def Stack() returns stack:
2 stack = ()
3

4 def push(st, v):
5 (!st) = (v, !st)
6

7 def pop(st) returns next :
8 let (top, rest) = !st :
9 next = top

10 !st = rest

Figure A.5: [code/stack3.hny] Stack implemented using a recursive tuple data structure.

212

https://harmony.cs.cornell.edu/code/stack2.hny
https://harmony.cs.cornell.edu/code/stack3.hny

1 from alloc import malloc, free
2

3 def Stack() returns stack:
4 stack = None
5

6 def push(st, v):
7 !st = malloc({ .value: v, .rest : !st })
8

9 def pop(st) returns next :
10 let node = !st :
11 next = node→value
12 !st = node→rest
13 free(node)

Figure A.6: [code/stack4.hny] Stack implemented using a linked list.

2. Figure A.4 also uses a list but, instead of updating the list, it replaces the list with a new one
for each operation;

3. Figure A.5 represents a stack as a recursively nested tuple (v, f), where v is the element on
top of the stack and r is a stack that is the remainder;

4. Figure A.6 implements a stack as a linked list with nodes allocated using the alloc module.

While the last option is the most versatile (it allows cyclic data structures), Harmony does not
support garbage collection for memory allocated this way and so allocated memory that is no longer
in use must be explicitly released using free.

A.8 Comments

Harmony supports the same commenting conventions as Python. In particular, anything after a
character on a line is ignored. You can also enclose comments on separate lines within triple
quotes. In addition, Harmony supports nested multi-line comments of the form (* comment *).

A.9 Type Checking

Harmony is dynamically typed. You can add type annotations to your program in the form of
assertions and invariants. For example:

213

https://harmony.cs.cornell.edu/code/stack4.hny

1 invariant (type(x) == "int") and ((x % 2) == 0)
2 x = choose { 0, 2, 4, 6 }
3

4 def double(n) returns result :
5 assert type(n) == "int"
6 result = n * 2
7 assert type(result) == "int"
8

9 def main():
10 x = double(x)
11

12 spawn main()

The invariant in Line 1 states that x is an even integer. The assertion in Line 5 states that the
argument to function double is an integer. The assertion in Line 7 states that the return value of
the function is also an integer. Harmony checks these types as it evaluates the program.

214

Appendix B

Modules

Harmony modules provide convenient access to various data structures, algorithms, and synchro-
nization paradigms. They are all implemented in the Harmony language itself (so you can look at
their code) although some methods have also been implemented directly into the underlying model
checker for more efficient model checking.

Currently there are the following modules:

action Section B.1 support for action-based specifications
alloc Section B.2 dynamic memory allocation
bag Section B.3 multi-sets
fork Section B.4 fork/join interface to threads
hoare Section B.5 Hoare module interface
list Section B.6 common operations on lists
set Section B.7 common operations on sets
synch Section B.8 synchronization

B.1 The action module

The action module supports action-based specification. Such a specification consists of a explicit
global state and rules for how to make state transitions. Chapter 29 provides an example. The
module has only one method:

explore(x) explore the state space

Here x is a set of lambdas, each of which can return a set of thunks, each representing a possible
action (state change). The union of the results of the lambdas should generate all possible actions.
A thunk represents a method and its arguments that updates the state accordingly.

215

B.2 The alloc module

The alloc module supports thread-safe (but not interrupt-safe) dynamic allocation of shared mem-
ory locations. There are just two methods:

malloc(v) return a pointer to a memory location initialized to v
free(p) free an allocated memory location p

The usage is similar to malloc and free in C. malloc() is specified to return None when
running out of memory, although this is an impossible outcome in the current implementation of
the module.

B.3 The bag module

The bag module has various useful methods that operate on bags or multisets:

empty() returns an empty bag
fromSet(s) create a bag from set s
fromList(t) convert list t into a bag
multiplicity(b, e) count how many times e occurs in bag b
bchoose(b) like choose(s), but applied to a bag
add(b, e) add one copy of e to bag b
remove(b, e) remove one copy of e from bag b
combinations(b, k) return set of all subbags of size k

B.4 The fork module

The fork module implements the fork/join interface to threads.

fork(thunk) spawn thunk and return a thread handle
join(handle) wait for the thread to finish and return its result

For example, the following code doubles each element of data in parallel and then sums the
result when done.

216

1 from fork import *
2 from list import *
3

4 data = { 1, 2, 4 }
5

6 def main():
7 let double = lambda x : 2*x end
8 let map = { fork(?double(k)) for k in data }:
9 print sum(join(t) for t in map)

10

11 spawn main()

B.5 The hoare module

The hoare module implements support for Hoare-style monitors and condition variables.

Monitor() return a monitor mutex
enter(m) enter a monitor. m points to a monitor mutex
exit(m) exit a monitor
Condition() return a condition variable
wait(c, m) wait on condition variable pointed to by c in monitor pointed to by m
signal(c, m) signal a condition variable

B.6 The list module

The list module has various useful methods that operate on lists or tuples:

217

subseq(t, b, f) return a slice of list t starting at index b and ending just before f
append(t, e) returns t + [e,]
head(t) return the first element of list t
tail(t) return all but the first element of list t
index(t, e) return the index of element e in list t
startswith(t, s) returns whether s is a prefix of t
filter(f, t) returns a list of elements of t satisfying function f
map(f, t) returns a list of elements of t mapped by function f
permuted(t) returns a permutation of set t
reversed(t) returns the elements of list t in reverse order
sorted(t) returns a sorted list from the elements or set or list t
set(t) convert a list into a set
list(t) convert a set into a list
values(t) convert values of a dict into a list sorted by key
items(t) convert dict into (key, value) list sorted by key
enumerate(t) like Python enumerate
sum(t) returns the sum of all elements in t
qsort(t) returns a copy of t sorted using quicksort
foldl(t, f, z) left fold with f a binary method and z the initial value
foldr(t, f, z) right fold with f a binary method and z the initial value
reduce(f, t, z) same as foldl(t, f, z)

B.7 The set module

The set module implements the following methods:

issubseteq(s, t) returns whether s is a subset of t
issubsetstrict(s, t) returns whether s is a strict subset of t
issubset(s, t) same as issubseteq(s, t)
issuperseteq(s, t) returns whether s is a superset of t
issupersetstrict(s, t) returns whether s is a strict superset of t
issuperset(s, t) same as issuperseteq(s, t)
add(s, e) returns s ∪ {e}
remove(s, e) returns s \ {e}
subsets(s) returns the set of subsets of s
union(s) returns the union of the elements of s
filter(f, s) returns a set of elements of s satisfying function f
map(f, s) returns a set of elements of s mapped by function f
cartesian(d) d is a list of sets. Returns the Cartesian product.
combinations(s, k) returns set of all subsets of size k
reduce(f, t, z) same as Python’s functools reduce()

218

For Python programmers: note that s <= t does not check if s is a subset of t when s and t
are sets, as “<=” implements a total order on all Harmony values including sets (and the subset
relation is not a total order).

B.8 The synch module

The synch module provides the following methods:

atomic load(p) atomically evaluate !p
atomic store(p, v) atomically assign !p = v
tas(lk) test-and-set on !lk
cas(ptr, old, new) compare-and-swap on !ptr
BinSema(v) return a binary semaphore initialized to v
Lock() return a binary semaphore initialized to False
acquire(bs) acquire binary semaphore !bs
release(bs) release binary semaphore !bs
Condition() return a condition variable
wait(c, lk) wait on condition variable !c and lock lk
notify(c) notify a thread waiting on condition variable !c
notifyAll(c) notify all threads waiting on condition variable !c
Semaphore(cnt) return a counting semaphore initialized to cnt
P(sema) procure !sema
V(sema) vacate !sema
Queue() return a synchronized queue object
get(q) return next element of q, blocking if empty
put(q, item) add item to a

219

Appendix C

The Harmony Virtual Machine

The Harmony Virtual Machine (HVM, Chapter 4) has the following state:

code a list of HVM machine instructions
variables a dictionary mapping strings to values
ctxbag a bag of runnable contexts
stopbag a bag of stopped contexts
choosing if not None, indicates a context that is choosing

There is initially a single context with name init () and program counter 0. It starts execut-
ing in atomic mode until it finishes executing the last Return instruction. Other threads, created
through spawn statements, do not start executing until then.

A step is the execution of a single HVM machine instruction by a context. Each step generates
a new state. When there are multiple contexts, the HVM can interleave them. However, trying
to interleave every step would be needlessly expensive, as many steps involve changes to a context
that are invisible to other contexts.

A stride can involve multiple steps. The following instructions start a new stride: Load, Store,
AtomicInc, and Continue. The HVM interleaves stides, not steps. Like steps, each stride involves
a single context. Unlike a step, a stride can leave the state unchanged (because its steps lead back
to where the stride started).

Executing a Harmony program results in a graph where the nodes are Harmony states and the
edges are strides. When a state is choosing, the edges from that state are by a single context, one
for each choice. If not, the edges from the state are one per context.

Consecutive strides by the same thread are called a turn. Each state maintains the shortest
path to it from the initial state in terms of turns. The diameter of the graph is the length of the
longest path found in terms of turns.

If some states have a problem, the state with the shortest path is reported. Problematic states
include states that experienced exceptions. If there are no exceptions, Harmony computes the
strongly connected components (SCCs) of the graph (the number of such components are printed
as part of the output). The sink SCCs should each consist of a terminal state without any threads.
If not, again the state with the shortest path is reported.

220

If there are no problematic states, Harmony reports “no issues found” and outputs in the HTML
file the state with the longest path.

C.1 Machine Instructions

Apply m call method m

Assert, Assert2 pop b and check that it is True. Assert2 also pops value to print

AtomicInc/Dec increment/decrement the atomic counter of this context

Continue no-op (but causes a context switch)

Choose choose an element from the set on top of the stack

Cut retrieve an element from a iterable type

Del [v] delete shared variable v

DelVar [v] delete thread variable v

Dup duplicate the top element of the stack

Finally pc pc is the pc of a lambda that returns a boolean

Frame m a start method m with arguments a, initializing variables

Go pop context and value, push value on context’s stack, and add to context bag

Invariant pc pc is the pc of a lambda that takes arguments pre, post and returns a boolean

Jump p set program counter to p

JumpCond e p pop expression and, if equal to e, set program counter to p

Load [v] evaluate the address on the stack (or load shared variable v)

LoadVar v push the value of a thread variable onto the stack

Move i move stack element at offset i to top of the stack

n-ary op apply n-ary operator op to the top n elements on the stack

Pop pop a value of the stack and discard it

Print pop a value and add to the print history

Push c push constant c onto the stack

ReadonlyInc/Dec increment/decrement the read-only counter of this context

Return [v [, d]] pop return address, push v (or default value d), and restore pc

Sequential pop an address of a variable that has sequential consistency

SetIntLevel pop e, set interrupt level to e, and push old interrupt level

Spawn [eternal] pop initial thread-local state, argument, and method and spawn a new context

Split pop tuple and push its elements

Stop [v] save context into shared variable v and remove from context bag

Store [v] pop a value from the stack and store it in a shared variable

StoreVar [v] pop a value from the stack and store it in a thread variable

Trap pop interrupt argument and method

221

Clarifications:

� Even though Harmony code does not allow taking addresses of thread variables, both shared
and thread variables can have addresses.

� The Load, Del, DelVar, and Stop instructions have an optional variable name: if omitted the
top of the stack must contain the address of the variable.

� The Store instruction has an optional variable name. The StoreVar instruction can even
have a nested tuple of variable names such as (a, (b, c)). In both cases the value to be assigned
is on the top of the stack. If the name is omitted, the address is underneath that value on
the stack.

� The Frame instruction pushes the value of the thread register (i.e., the values of the thread
variables) onto the stack. The Return instruction restores the thread register by popping its
value of the stack.

� All method calls have exactly one argument, although it sometimes appears otherwise:

– m() invokes method m with the empty dictionary () as argument;

– m(a) invokes method m with argument a;

– m(a, b, c) invokes method m with tuple (a, b, c) as argument.

The Frame instruction unpacks the argument to the method and places them into thread
variables by the given names.

� The Apply instruction is unnecessary as it can be implemented using 2-ary Closure and
Load. However, method calls are frequent enough to warrant a faster mechanism, reducing
model checking time.

� The Return instruction has an optional result variable and default value. If neither is specified,
the result value is on top of the stack. Otherwise it tries to read the local variable. If the
variable does not exist, the default value is used or an error is thrown.

� Every Stop instruction must immediately be followed by a Continue instruction.

� There are two versions of AtomicInc: lazy or eager. When eager, an atomic section immedi-
ately causes a switch point (switch between threads). When lazy, the state change does not
happen until the first Load, Store, or Print instruction. If there are no such instructions,
the atomic section may not even cause a switch point.

The n-Ary instruction can have many different operators as argument. Section A.1 describes
many of these operators, but some are used internally only. The current set of such operators are
as follows:

AddArg pop an argument and an address and push an address with the argument added
Closure pop an argument and a function and push an address with the single argument
DictAdd pop a value, a key, and a dictionary, and push an updated dictionary
ListAdd pop a value and a list, and push a new list with the given value added to the end
SetAdd pop a value and a set, and push a new set with the given value added

222

C.2 Addresses and Method Calls

Syntactically, Harmony does not make a distinction between methods calls and indexing in Harmony
dictionaries, lists, and strings. This is because Harmony makes all four look like functions that map
a value to another value. Beuses dynamic types, an expression like a b could mean that variable a
contains a program counter value and a method call must be made with b as argument, or index
b must be looked up in the a value. Things can get more complicated for an expression like a b c,
which means ((a b) c): a b could return a program counter value or an indexable Harmony value.

To deal with this, Harmony has a fairly unique address type. An address consists of a function
and a list of arguments, which we will denote here as ⟨f, [a0, a1, ...]⟩. If a is a shared variable, then
the address of a b c is ⟨$, [“a”, b, c]⟩, where $ is the function that maps the names of shared
variables to their values. In particular, $(“a”) is the value of variable a. A function can also be a
program counter value or an indexable Harmony value. So, if a is instead a method (i.e., a program
counter constant), then the address would by ⟨a, [b, c]⟩. In the Harmony Virtual Machine, the $
function is represented as the program counter value −1.

To evaluate the Harmony expression a b c, Harmony first generates its address (evaluating the
expression left to right). If a is a variable name, then the function in the address depends on
whether it is a shared variable or a thread variable. After the address is computed and pushed
onto the stack, the Load instruction evaluates the address, possibly in multiple steps in an iterative
manner.

A basic step of evaluating ⟨function, arguments⟩ proceeds as follows:

1. If arguments is empty, replace the address by function and proceed to the next instruction.

2. If function is an indexable Harmony value (list, string, or dictionary), arg is the first
argument, and remainder are the remaining arguments, then replace the address by
⟨function[arg], remainder⟩ and repeat.

3. If function is $, then replace the address by ⟨$[arg], remainder⟩ and repeat.

4. If function is a program counter value, then push remainder, the current program counter
(still pointing to the Load instruction), and arg onto the stack and set the program counter to
function. The Return instruction pushes ⟨r, remainder⟩, where r is the result of the function,
and restores the program counter so it executes the Load instruction again.

The Harmony Virtual Machine can sometimes to multiple of these basic steps in one big step.
For example, if a b c is a memory address, the Load instruction will finish in a single atomic step.
Both Load and Return are optimized in such ways.

C.3 Contexts and Threads

A context captures the state of a thread. Each time the thread executes an instruction, it goes from
one context to another. All instructions update the program counter (Jump instructions are not
allowed to jump to their own locations), and so no instruction leaves the context the same. There
may be multiple threads with the same state at the same time. A context consists of the following:

223

program counter an integer value pointing into the code
atomic if non-zero, the thread is in atomic mode
readonly if non-zero, the thread is in read-only mode
stack a list of Harmony values
method variables a dictionary mapping strings (names of method variables) to values
thread-local variables a dictionary mapping strings (names of thread-local variables) to values
stopped a boolean indicating if the context is stopped
failure if not None, string that describes how the thread failed

Details:

� A thread terminates when it reaches the Return instruction of the top-level method (when
the stack frame is of type thread) or when it hits an exception. Exceptions include divide by
zero, reading a non-existent key in a dictionary, accessing a non-existent variable, as well as
when an assertion fails;

� The execution of a thread in atomic mode does not get interleaved with that of other threads.

� The execution of a thread in read-only mode is not allowed to update shared variables of
spawn threads.

� The register of a thread always contains a dictionary, mapping strings to arbitrary values.
The strings correspond to the variable names in a Harmony program.

C.4 Formal Specification

Most of the Harmony Virtual Machine is specified in TLA+. Given a Harmony program, you can
output the TLA+ specification for the program using the following command:

$ harmony -o program.tla program.hny

For most Harmony programs, including Peterson’s algorithm and the Dining Philosophers in
this book, the result is complete enough to run through the TLC model checker.

224

Appendix D

How Harmony Works

This appendix gives a very brief overview of how Harmony works. In a nutshell, Harmony goes
through the following three phases:

1. The Harmony compiler turns your Harmony program into bytecode. A recursive descent
parser and code generator written in Python (see harmony.py) turns an x.hny program into
x.hvm, a JSON file containing the corresponding bytecode.

2. The Harmony model checker evaluates the state space that the program (now in bytecode) can
generate. The model checker is written in C as it needs to be highly efficient (see charm.c).
The model checker starts from the initial state, and then, iteratively, checks for each state that
it has found what next steps are possible and generates the next states using the Harmony
virtual machine (Appendix C). If the model is finite, eventually the model checker will
generate a graph with all possible states. If there is a problematic path in this graph (see
below), then it will report the shortest such path in the x.hco output file in JSON format.

3. The x.hco output file is translated twice by harmony.py. There is a so-called brief output
that is written to standard output. The rest depends on whether there was a problem with
the execution or not. If there was a problem, the more comprehensive output is placed in the
x.htm HTML output file, allowing you to navigate the problematic path and all the details of
each of the states on the path. If not, a DFA of the print behavior is generated and compared
with a provided DFA if specified with the -B flag.

D.1 Compiler

The Harmony compiler, in order to stay true to the Harmony source program, does not do much
in the way of optimizations. The main optimizations that it does are:

� Constant folding: (simple) expressions consisting only of constants are evaluated by the com-
piler rather than by the model checker;

� Jump threading: Harmony eliminates jump to jump instructions;

� Dead variable elimination: Harmony removes method variables that are no longer in use from
the state in order to reduce the state space to be explored.

225

D.2 Model Checker

The Harmony model checker, called Charm, takes the output from the compiler and explores the
entire state space in breadth-first order. Even though Harmony does not really support input, there
are three sources of non-determinism that make this exploration non-trivial:

� choose expressions: Harmony’s ability to let the program choose a value from a set;

� thread interleaving : different threads run pseudo-concurrently with their instructions inter-
leaved in arbitrary ways;

� interrupts: Harmony programs can set interrupts that can go off at arbitrary times.

A thread can be in atomic mode or not. In atomic mode, the execution of the thread is not
interleaved with other threads. A thread can also be in read-only mode or not. In read-only mode,
the thread cannot write or deleted shared variables.

Charm has some tricks to significantly reduce the state space to explore.

� A thread can have local state (program counter, stack, method variables, and thread-local
state variables). That state is called the context of the thread. The context of a thread cannot
be accessed by other threads, nor by invariant or finally statements. So, the model checker
only interleaves threads at Load, Store, and Del instructions where a thread interacts with
global variables.

� Threads are anonymous, and therefore two or more threads can have the same context. The
state of the model checker therefore maintains a bag (multiset) of contexts rather are than a
set of contexts. Thus even if there are hundreds of threads, there may be only tens of possible
context states.

That said, state space explosion is still a possibility, and Harmony programmers should keep
this in mind when writing and testing their programs. Do not be too ambitious: start with small
tests and gradually build them up as necessary.

The model checker stops either when it finds a failing execution or when it has explored the
entire state space, whichever comes first. An execution can fail for a variety of reasons:

� An invariant failing: Harmony evaluates all invariants in all states that if finds—if one fails,
Harmony stops further exploration;

� An assertion failing;

� A behavior violation: this is when the sequence of printed values are not recognized by the
provided DFA (using the -B flag);

� A silly error: this includes reading variables that have not been assigned, trying to add a set
to an integer, taking the length of something that is not a set of a dictionary, and so on;

� An infinite loop: a thread goes into an infinite loop without accessing shared variables.

226

D.3 Model Checker Output Analysis

The output of the model checker is a graph (a so-called Kripke structure) that is typically very
large. If some execution failed, then Harmony will simply report the path of that failing execution.
But otherwise there may be the following outcomes:

� No issues: no failing executions and each program can terminate;

� Non-terminating states: some executions lead to some form of deadlock or other issue that
causes some (non-eternal) threads not to be able to terminate;

� Race conditions: there are executions in which two threads access the same shared state
variable, with at least one of those accesses being a Store operation;

� Busy waiting: executions in which threads are actively waiting for some condition, usually by
releasing and reacquiring locks.

In order to diagnose these outcomes, Harmony must analyze the graph.
The first thing that Harmony does is to locate non-terminating states, if any. To do this, Har-

mony first determines the strongly connected components of the graph using Kosaraju’s algorithm.
A component (subgraph) of a graph is strongly connected if each vertex (state) in the component
can be reached from each other vertex. The components then form a Directed Acyclic Graph
(DAG). The DAG is easier to analyze than the original graph. One can easily determine the sink
components (the components with no outgoing edges). If such a component has non-eternal threads
in it, then each state in that component is a non-terminating state.

To find race conditions, the model checker looks in the graph for states in which there are
multiple threads that can make a step. If there is a step in which multiple threads access the same
shared variable, at least one of those accesses is a store operation, and at least one of those threads
is not in atomic mode, then Harmony reports the shortest path to such a state.

To show how Harmony detects busy waiting, we will first show how Harmony determines if a
thread is blocked or not. A thread is considered blocked if it cannot terminate without the help
of another thread. For example, a thread waiting for a lock is blocked and cannot terminate until
another thread releases the lock. Determining whether a thread is blocked in a particular state can
be done within the confines of the connected component: the analyzer tries all possible executions
of the thread. If it cannot “escape” the connected component by doing so, it is considered blocked.
A thread is considered busy waiting if it is blocked, but it is also changing the shared state while
doing so. A thread that is waiting on a spinlock only observes the state.

In the output, each thread has a unique identifier: T0 is the initialization thread; Tn is the
nth spawned thread that executes. This seems to contradict the fact that Harmony threads are
anonymous. The output analyzer assigns these identifiers a posteriori to the threads in the state
graph by keeping track, along the reported execution path, what state each thread is in. So,
by examining the initial context of the thread that is running from some particular state, it can
determine if that context corresponds to the current context of some thread that ran previously or
if the context belongs to a new thread that has not run before.

If there are no issues, Harmony also generates a DFA of the print behavior. Starting with
the original state graph or Kripke structure, the edges are inspected. If there are multiple print
operations on an edge, additional states are inserted so that there are either 0 or 1 print operations
on an edge. This graph of nodes (states) and edges (transitions) forms a Non-deterministic Finite

227

Automaton (NFA) with ϵ-transitions (transitions without print operations). Harmony turns the
NFA into a DFA and by default also minimizes the DFA (although not strictly necxessary). The
DFA can be fed into another run of the model checker to check that its print operations are consistent
with the provided DFA.

228

Appendix E

Simplified Grammar

The next pages show a compact version of the complete Harmony grammar. The precedence rules
are loosely as follows. Application binds most strongly. Next are unary operators. Next are binary
operators. Thus –a[1] – a[2] parses as (–(a[1])) – (a[2]). !a[1] parses as !(a[1]). Harmony will
complain about ambiguities such as a – b + c. Avoiding other ambiguities, Harmony does not
allow expressions of the form a @b where @ is some kind of unary operator. You have to write this
as either a[@b] or a(@b). The simplified grammar ignores indentation rules.

229

1 block : statement [[NEWLINE | ';'] statement]*;
2

3 statement
4 : e # usually a function call
5 | e '=' [e '=']* e # assignment
6 | e aug assign e # augmented assignment
7 | assert e [',' e]
8 | atomically statement
9 | atomically ':' block

10 | await e
11 | const bv '=' e
12 | def bv [returns id]? ':' block
13 | del e [',' e]*
14 | finally e
15 | from id import id [',' id]*
16 | global id [',' id]*
17 | go e e
18 | if e ':' block [elif e ':' block]* [else ':' block]?
19 | import id [',' id]*
20 | invariant e
21 | pass
22 | print e
23 | sequential id [',' id]*
24 | spawn e
25 | trap e
26 | var bv '=' e
27 | while e ':' block
28 | letwhen ':' block # let/when statement
29 | comprehension ':' block # for statement
30 ;
31

32 comprehension: for clause [for clause | where clause]*;
33 letwhen: [let clause | when clause]+;
34 for clause: for bv in e;
35 where clause: where e;
36 let clause: let bv '=' e;
37 when clause: when e | when exists bv in e;
38

39 aug assign
40 : '+=' | '–=' | '*=' | '**=' | '/=' | '//=' | '%=' | 'mod=' | '>>=' | '<<=
41 | 'and=' | 'or=' | '=>=' | '&=' | '|=' | 'ˆ='

42 ;

230

1 e # expression
2 : False | True | None | '{:}'
3 | [0–9]+ | 0x[0–9a–fA–F]+ | 0b[0–1]+ | 0o[0–7]+ # integer
4 | "..." | '...' | """...""" | ' ' '...' ' ' | '.' id # string forms
5 | id
6 | unary e
7 | e binary e
8 | e e # application
9 | [e,]* e? # tuple/list

10 | '{' [e,]* e? '}' # set
11 | '{' [e ':' e,]* [e ':' e] '}' # dictionary
12 | '{' e '..' e '}' # range
13 | e comprehension # list comprehension
14 | '{' e comprehension '}' # set comprehension
15 | '{' e ':' e comprehension '}' # dict comprehension
16 | '(' e? ')'
17 | '[' e? ']'
18 | e if e else e
19 | lambda bv : e end
20 | atomically e
21 | save e
22 | stop id
23 ;
24

25 unary
26 : '–' | '?' | '!' | '|' | '&' | 'ˆ' | abs | any | all | choose
27 | len | keys | max | min | not | str | type
28 ;
29

30 binary
31 : '+' | '–' | '*' | '/' | '//' | '%' | mod | '˜' | '<<' | '>>'

32 | '==' | '!=' | '<' | '<=' | '>' | '>=' | not? in | not? '=>'

33 ;
34

35 bv # bounded variable(s)
36 : id
37 | [bv ',']+ bv
38 | '(' bv ')'
39 | '[' bv ']'
40 ;
41

42 id : [a–zA–Z][a–zA–Z0–9]*; # identifier

231

Appendix F

Directly checking linearizability

We want a concurrent queue to behave consistently with a sequential queue in that all put
and get operations should appear to happen in a total order. Moreover, we want to make sure
that if some put or get operation o1 finished before another operation o2 started, then o1 should
appear to happen before o2 in the total order. If these two conditions are met, then we say that
the concurrent queue implementation is linearizable.

In general, if a data structure is protected by a single lock and every operation on that data
structure starts with acquiring the lock and ends with releasing the lock, it will automatically be
linearizable. The queue implementation in Figure 11.3 does not quite match this pattern, as the
put operation allocates a new node before acquiring the lock. However, in this case that is not a
problem, as the new node has no dependencies on the queue when it is allocated.

Still, it would be useful to check in Harmony that Figure 11.3 is linearizable. To do this,
instead of applying the operations sequentially, we want the test program to invoke the operations
concurrently, consider all possible interleavings, and see if the result is consistent with an appropriate
sequential execution of the operations.

Harmony provides support for testing linearizability, but requires that the programmer identifies
what are known as linearization points in the implementation that indicate exactly which sequential
execution the concurrent execution must align with. Figure F.1 is a copy of Figure 11.3 extended
with linearization points. For each operation (get and put), the corresponding linearization point
must occur somewhere between acquiring and releasing the lock. Each linearization point execution
is assigned a logical timestamp. Logical timestamps are numbered 0, 1, ... To do so, we have added
a counter (time) to the Queue. Method linpoint saves the current counter in this.qtime and
increments the counter. The this dictionary maintains thread-local state associated with the thread
(Chapter 4)—it contains variables that can be accessed by any method in the thread.

Given the linearization points, Figure F.2 shows how linearizability can be tested. The test pro-
gram is similar to the sequential test program (Figure 13.1) but starts a thread for each operation.
The operations are executed concurrently on the concurrent queue implementation of Figure F.1,
but they are executed sequentially on the sequential queue specification of Figure 11.1(a). To that
end, the test program maintains a global time variable qtime, and each thread waits until the times-
tamp assigned to the last concurrent queue operation matches qtime before invoking the sequential
operation in the specification. Afterward, it atomically increments the shared qtime variable. This

232

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue():
5 result = { .head : None, .tail : None, .lock : Lock(), .time: 0 }
6

7 def linpoint(q):
8 atomically:
9 this.qtime = q→time

10 q→time += 1
11

12 def put(q, v):
13 let node = malloc({ .value: v, .next : None }):
14 acquire(?q→lock)
15 if q→tail == None:
16 q→tail = q→head = node
17 else:
18 q→tail→next = node
19 q→tail = node
20 linpoint(q)
21 release(?q→lock)
22

23 def get(q):
24 acquire(?q→lock)
25 let node = q→head :
26 if node == None:
27 result = None
28 else:
29 result = node→value
30 q→head = node→next
31 if q→head == None:
32 q→tail = None
33 free(node)
34 linpoint(q)
35 release(?q→lock)

Figure F.1: [code/queuelin.hny] Queue implementation with linearization points

233

https://harmony.cs.cornell.edu/code/queuelin.hny

1 import queuelin, queuespec
2

3 const NOPS = 4
4 const VALUES = { 1..NOPS }
5

6 sequential qtime
7 qtime = 0
8

9 implq = queuelin.Queue()
10 specq = queuespec.Queue()
11

12 def thread():
13 let op = choose({ "get", "put" }):
14 if op == "put":
15 let v = choose(VALUES):
16 queuelin.put(?implq, v)
17 await qtime == this.qtime
18 queuespec.put(?specq, v)
19 else:
20 let v = queuelin.get(?implq):
21 await qtime == this.qtime
22 let w = queuespec.get(?specq):
23 assert v == w
24 atomically qtime += 1
25

26 for i in {1..NOPS}:
27 spawn thread()

Figure F.2: [code/qtestconc.hny] Concurrent queue test

234

https://harmony.cs.cornell.edu/code/qtestconc.hny

results in the operations being executed sequentially against the sequential specification in the same
order of the linearization points of the concurrent specification.

235

Appendix G

Manual Pages

NAME

Harmony — the Harmony compiler and model checker

SYNOPSIS

harmony [options] filename

DESCRIPTION

harmony is a compiler and model checker for the Harmony programming language. harmony com-
piles Harmony into bytecode and then model checks the bytecode. The result is analyzed for
failing assertions and invariants, non-terminating conditions such as deadlock and infinite loops,
race conditions, deviations from specifications, and busy waiting. There are three phases:

� compile: parses Harmony source code and generates Harmony virtual machine code;

� model check : generates a graph of all reachable states from the Harmony virtual machine
code while checking for safety violations;

� analysis: checks the graph for non-termination, race conditions, and busy waiting.

The Harmony file name extensions are as follows:

� .hny: Harmony source code;

� .hvm: Harmony virtual machine code (in JSON format);

� .hco: Harmony output (in JSON format);

� .hvb: Harmony verbose output (human readable);

� .hfa: Harmony finite automaton, describing the possible print outputs (in JSON format).

236

In addition, harmony can also generate .tla (TLA+), .htm (HTML), .gv: (Graphviz DOT
version of .hfa output), .png: (PNG version of .hfa output), and .tex: (LaTeX formatted source
code).

By default, running “harmony x.hny’ will generate x.hvm, x.hco, x.hvb, x.png, and x.hvm

files. Harmony will also, by default, automatically start a web browser to display the x.hvm file.
Various options can be used to change the behavior.

When importing a module using import x, harmony will try to find the corresponding .hny file
in the following order:

1. check if the module file is specified with the -m or --module option;

2. see if a file by the name x.hny is present in the same directory as the source file;

3. see if a file by the name x.hny is present in the installation’s modules directory.

OPTIONS

Output file options:

� -o filename.gv : specify the name of the file where the graphviz (DOT) output should be
stored;

� -o filename.hco: specify the name of the file where model checker output should be stored;

� -o filename.hfa: specify the name of the file where the Harmony finite automaton should be
stored;

� -o filename.htm: specify the name of the file where the HTML output should be stored;

� -o filename.hvb: specify the name of the file where the verbose output should be stored;

� -o filename.hvm: specify the name of the file where the Harmony virtual machine code should
be stored;

� -o filename.png : specify the name of the file where the PNG output should be stored;

� -o filename.tla: generate a TLA+ file specifying the behaviors of the Harmony virtual machine
code;

� -o filename.tex : generate a LaTeX+ file containing the formatted source code.

Other options:

� -a: compile only and list machine code (with labels);

� -A: compile only and list machine code (without labels);

� -B filename.hfa: check Harmony code against output behaviors described in filename.hfa

(result of another Harmony run);

237

� -c, --const constant=expression: set the value of the given constant (which must be defined
in the code) to the result of evaluating the given expression;

� -m, --module module=filename.hny : load the given module instead of looking in default
locations;

� --noweb: do not start a web browser upon completion;

� -v, --version: print the harmony version number.

� -w #workers: specify the number of concurrent threads the model checker uses.

238

Acknowledgments

I received considerable help and inspiration from various people while writing this book.
First and foremost I would like to thank my student Haobin Ni with whom I’ve had numerous

discussions about the initial design of Harmony. Haobin even contributed some code to the Harmony
compiler. Many thanks are also due to William Ma who refactored the Harmony code to make it
easier to maintain. He also wrote the first version of the behavior automaton generator and created
the first graphs using the graphviz tool. I have had lots of discussions with him about a wide range
of improvements to the Harmony language, many of which came to fruition. I also want to thank
Ariel Kellison with whom I discussed approaches to formally specify the Harmony virtual machine
in TLA+.

Kevin Sun and Anthony Yang built a beautiful VSCode extension for Harmony called Harmony-
Lang and proceeded to build an animator for Harmony executions and two cloud-based Harmony
offerings, which you can learn about at http://harmony.cs.cornell.edu. They also developed much
of that web site and made valuable suggestions for improvements to the Harmony language. Later
they were joined by Shi Chong Zhao and Robin Li, who also made significant contributions. Kevin,
Anthony, and Robin continue to make great contributions to the Harmony distribution.

I also would like to acknowledge my regular conversation about Harmony with Sasha Sandler of
the Oracle Cloud Infrastructure group. He is an early industrial adopter of Harmony and has used
it successfully to find and fix bugs in industrial settings. His insights have been invaluable.

Most of what I know about concurrent programming I learned from my colleague Fred Schneider.
He suggested I write this book after demonstrating Harmony to him. Being a foremost security
expert, he also assisted significantly with the chapter on the Needham-Schroeder protocol.

Leslie Lamport introduced me to using model checking to test properties of a concurrent system.
My experimentation with using TLC on Peterson’s Algorithm became an aha moment for me. I
have learned so much from his papers.

I first demonstrated Harmony to the students in my CS6480 class on systems and formal ver-
ification and received valuable feedback from them. The following people contributed by making
comments on or finding bugs in early drafts of the book: Alex Chang, Anneke van Renesse, Bren-
don Nguyen, CJ Lee, Harshul Sahni, Hartek Sabharwal, Heather Zheng, Jack Rehmann, Jacob
Brugh, Liam Arzola, Lorenzo Alvisi, Maria Martucci, Nalu Concepcion, Phillip O’Reggio, Saleh
Hassen, Sunwook Kim, Terryn Jung, Melissa Reifman, Trishita Tiwari, Xiangyu Zhang, Yidan
Wang, Zhuoyu Xu, and Zoltan Csaki.

Finally, I would like to thank my family who had to suffer as I obsessed over writing the code
and the book, at home, during the turbulent months of May and June 2020.

239

http://harmony.cs.cornell.edu

Index

acknowledgment, 150
acquire, 65
action, 168
actor model, 120
address, 29, 48
alloc module, 216
alternating bit protocol, 150
atomic instruction, 58
atomicity, 9

bag, 28
bag module, 216
barrier synchronization, 123
big lock, 73
blocked thread, 61
blocking queue, 120
bounded buffer, 92
broadcast, 107
busy waiting, 89
bytecode, 27

choose operator, 13
client/server model, 95
coarse-grained lock, 73
constant, 18
context, 28
continuation, 28
corner case, 10
critical region, 34
critical section, 34

data race, 60
deadlock, 113
deadlock avoidance, 116
determinism, 9, 162
dictionary, 27

dining philosopher, 113
directory, 28
distributed system, 150
double turnstile, 127
dynamic allocation, 68

exception, 140

failure, 150
fairness, 101
fine-grained lock, 73
flow control, 95
fork module, 216
formal verification, 10

go statement, 64

hand-over-hand locking, 73
Harmony method, 48
Harmony Virtual Machine, 27
Heisenbug, 9
hoare module, 217
HVM, 27

idempotent, 135
import statement, 50
inductive invariant, 43
interleaving, 22
interrupt, 140
interrupt-safety, 140
invariant, 10, 43

Kripke structure, 227

list module, 217
liveness property, 35
lock, 36, 60

240

lock granularity, 73
logical timestamp, 173, 232

machine instruction, 21
Mesa, 107
message passing, 120
model checking, 9
module, 50
monitor, 104
multiple conditions, waiting on, 114
multiset, 28
mutual exclusion, 35

network, 150
non-blocking synchronization, 147
non-determinism, 41
notify, 107
notifyAll, 107

pattern matching, 210
Peterson’s Algorithm, 41
pipeline, 92
pointer, 48
producer/consumer problem, 92
program counter, 28
progress, 35
property, 101
protocol, 150

race condition, 22
reachable state, 41
reader/writer lock, 89
register, 28
release, 65
replication, 162
reserve debugging, 87
retransmission, 150

safety property, 35
seqlock, 149
sequence number, 150
sequential, 9
sequential consistency, 29
set module, 218
shared variable, 9
signal, 104
single point of failure, 172

spinlock, 56, 58
split binary semaphore, 96
stack machine, 29
starvation, 60, 101
state, 41
state machine replication, 162
step, 41
stop expression, 65
stride, 220
synch module, 60, 219
synchronized queue, 120

TAS, 58
test, 9
test-and-set, 58
thread, 9, 19, 34
thread safety, 34
thread variable, 41
thread-local, 28
thunk, 168
Time Of Check Time Of Execution, 65
TOCTOE, 65
trace, 41

virtual machine, 27

wait, 104
wait-free synchronization, 149

241

Glossary

actor model is a concurrency model where there are no shared variables, only threads with private
variables that communicate through message passing. 120

atomic instruction a machine instruction that may involve multiple memory load and/or store
operations and is executed atomically. 58

atomicity describes that a certain machine instruction or sequence of machine instructions is exe-
cuted indivisibly by a thread and cannot be interleaved with machine instructions of another
thread. 9

barrier synchronization is when a set of threads execute in rounds, waiting for one another to
complete each round. 123

behavior is a sequence of states. A trace uniquely defines a behavior but not vice versa. 77

blocked thread is a thread that cannot change the state or terminate or can only do so after
another thread changes the state first. For example, a thread that is waiting for a lock to
become available. 61

busy waiting (aka spin-waiting) is when a thread waits in a loop for some application-defined
condition instead of blocking. 89

concurrent execution (aka parallel execution) is when there are multiple threads executing and
their machine instructions are interleaved in an unpredictable manner. 9

condition variable a variable that keeps track of which threads are waiting for a specific
application-level condition. The variable can be waited on as well as signaled or notified.
104

conditional critical section is a critical section with, besides mutual exclusion, additional con-
ditions on when a thread is allowed to enter the critical section. 96

context (aka continuation) describes the state of a running thread, including its program counter,
the values of its variables (stored in its register), and the contents of its stack. 28

critical section (aka critical region) is a set of instructions that only one thread is allowed to
execute at a time. The instructions are, however, not executed atomically, as other threads
can continue to execute and access shared variables. 34

242

data race is when there are two or more threads concurrently accessing a shared variable, at least
one of which is an update to the variable. 60

deadlock is when there are two or more threads waiting indefinitely for one another to release a
resource. 113

determinism is when the outcome of an execution is uniquely determined by the initial state. 9

fairness is when each thread eventually can access each resource it needs to access with high
probability. 101

invariant is a binary predicate over states that must hold for every reachable state of a thread. 10

linearizable is a consistency condition for concurrent access to an object, requiring that each
access must appear to execute atomically sometime between the invocation of the access and
its completion. 232

lock an object that can be owned by at most one thread at a time. Useful for implementing mutual
exclusion. 36

machine instruction is an atomic operation on the Harmony virtual machine, executed by a
thread. 21

model checking is a formal verification method that explores all possible executions of a program,
which must have a finite number of states. 9

monitor is a programming language paradigm that supports mutual exclusion as well as waiting
for resources to become available. 104

mutual exclusion is the property that two threads never enter the same critical section. 34

non-blocking synchronization (aka wait-free synchronization) is when access to a shared re-
source can be guaranteed in a bounded number of steps even if other threads are not making
progress. 147

producer/consumer problem is a synchronization problem whereby one or more producing
threads submit items and one or more consuming threads want to receive them. No item
can get lost or forged or be delivered to more than one consumer, and producers and con-
sumers should block if resources are exhausted. 92

property describes a set of execution traces or behaviors or histories that are allowed by a pro-
gram. Safety properties are properties in which !dblquote(no bad things happen,)! such
as violating mutual exclusion in a critical section. Liveness properties are properties where
!dblquote(something good eventually happens,)! like threads being able to enter the critical
section if they want to. 101

race condition describes when multiple threads access shared state concurrently, leading to un-
desirable outcomes. 22

243

reader/writer lock is a lock on a resource that can be held by multiple threads if they all only
read the resource. 89

replication maintains multiple copies of some resource to improve availability in the face of fail-
ures. 162

semaphore is a counter that can be atomically incremented and decremented, but blocks the
thread until the counter is larger than zero first. 96

sequential consistency is a consistency model in which shared memory accesses are executed in
an order consistent with the program order. 41

sequential execution is when there is just one thread executing, as opposed to concurrent exe-
cution. 9

shared variable is a variable that is stored in the memory of the Harmony virtual machine and
shared between multiple threads, as opposed to a thread variable. 9

spinlock is an implementation of a lock whereby a thread loops until the lock is available, at which
point the thread atomically obtains the lock. 56

stack machine is a model of computing where the state of a thread is kept on a stack. Harmony
uses a combination of a stack machine and a register-based machine. 29

starvation is when a thread cannot make progress because it is continuously losing a competition
with other threads to get access to a resource. 101

state an assignment of values to variables. In a Harmony virtual machine, this includes the contents
of its shared memory and the set of contexts. 41

state machine replication is a replication technique in which a collection of deterministic state
machines process the same inputs in the same order. 162

step is the execution of a machine instruction by a thread, updating its state. 41

thread is code in execution. We do not make the distinction between threads and threads. A
thread has a current context and updates its context every time it executes a machine in-
struction. 19

thread safety is when the implementation of a data structure allows concurrent access with well-
defined semantics. 34

thread variable is a variable that is private to a single thread and stored in its register. 41

trace is a sequence of steps, starting from an initial state. 41

244

	On Concurrent Programming
	Hello World!
	The Problem of Concurrent Programming
	The Harmony Virtual Machine
	Critical Sections
	Peterson's Algorithm
	Harmony Methods and Pointers
	Specification
	Spinlock
	Lock Implementations
	Concurrent Data Structures
	Fine-Grained Locking
	Testing: Checking Behaviors
	Debugging
	Conditional Waiting
	Reader/Writer Locks
	Bounded Buffer

	Split Binary Semaphores
	Starvation
	Monitors
	Deadlock
	Actors and Message Passing
	Barrier Synchronization
	Example: A Concurrent File Service
	Interrupts
	Non-Blocking Synchronization
	Alternating Bit Protocol
	Leader Election
	Transactions and Two Phase Commit
	Chain Replication
	Working with Actions
	Replicated Atomic Read/Write Register
	Distributed Consensus
	Paxos
	Needham-Schroeder Authentication Protocol
	Bibliography
	Harmony Language Details
	Value Types and Operators
	Statements
	Harmony is not object-oriented
	Constants, Global and Local Variables
	Operator Precedence
	Tuples, Lists, and Pattern Matching
	Dynamic Allocation
	Comments
	Type Checking

	Modules
	The action module
	The alloc module
	The bag module
	The fork module
	The hoare module
	The list module
	The set module
	The synch module

	The Harmony Virtual Machine
	Machine Instructions
	Addresses and Method Calls
	Contexts and Threads
	Formal Specification

	How Harmony Works
	Compiler
	Model Checker
	Model Checker Output Analysis

	Simplified Grammar
	Directly checking linearizability
	Manual Pages
	Acknowledgments
	Index
	Glossary

